from typing import Any, Callable, Dict, Optional, Sequence from llama_index.bridge.pydantic import Field, PrivateAttr from llama_index.callbacks import CallbackManager from llama_index.core.llms.types import ( ChatMessage, ChatResponse, ChatResponseAsyncGen, ChatResponseGen, CompletionResponse, CompletionResponseAsyncGen, CompletionResponseGen, LLMMetadata, ) from llama_index.llms.base import ( llm_chat_callback, llm_completion_callback, ) from llama_index.llms.generic_utils import ( completion_response_to_chat_response, stream_completion_response_to_chat_response, ) from llama_index.llms.llama_utils import completion_to_prompt, messages_to_prompt from llama_index.llms.llm import LLM from llama_index.llms.sagemaker_llm_endpoint_utils import BaseIOHandler, IOHandler from llama_index.types import BaseOutputParser, PydanticProgramMode from llama_index.utilities.aws_utils import get_aws_service_client DEFAULT_IO_HANDLER = IOHandler() LLAMA_MESSAGES_TO_PROMPT = messages_to_prompt LLAMA_COMPLETION_TO_PROMPT = completion_to_prompt class SageMakerLLM(LLM): endpoint_name: str = Field(description="SageMaker LLM endpoint name") endpoint_kwargs: Dict[str, Any] = Field( default={}, description="Additional kwargs for the invoke_endpoint request.", ) model_kwargs: Dict[str, Any] = Field( default={}, description="kwargs to pass to the model.", ) content_handler: BaseIOHandler = Field( default=DEFAULT_IO_HANDLER, description="used to serialize input, deserialize output, and remove a prefix.", ) profile_name: Optional[str] = Field( description="The name of aws profile to use. If not given, then the default profile is used." ) aws_access_key_id: Optional[str] = Field(description="AWS Access Key ID to use") aws_secret_access_key: Optional[str] = Field( description="AWS Secret Access Key to use" ) aws_session_token: Optional[str] = Field(description="AWS Session Token to use") aws_region_name: Optional[str] = Field( description="AWS region name to use. Uses region configured in AWS CLI if not passed" ) max_retries: Optional[int] = Field( default=3, description="The maximum number of API retries.", gte=0, ) timeout: Optional[float] = Field( default=60.0, description="The timeout, in seconds, for API requests.", gte=0, ) _client: Any = PrivateAttr() _completion_to_prompt: Callable[[str, Optional[str]], str] = PrivateAttr() def __init__( self, endpoint_name: str, endpoint_kwargs: Optional[Dict[str, Any]] = {}, model_kwargs: Optional[Dict[str, Any]] = {}, content_handler: Optional[BaseIOHandler] = DEFAULT_IO_HANDLER, profile_name: Optional[str] = None, aws_access_key_id: Optional[str] = None, aws_secret_access_key: Optional[str] = None, aws_session_token: Optional[str] = None, region_name: Optional[str] = None, max_retries: Optional[int] = 3, timeout: Optional[float] = 60.0, temperature: Optional[float] = 0.5, callback_manager: Optional[CallbackManager] = None, system_prompt: Optional[str] = None, messages_to_prompt: Optional[ Callable[[Sequence[ChatMessage]], str] ] = LLAMA_MESSAGES_TO_PROMPT, completion_to_prompt: Callable[ [str, Optional[str]], str ] = LLAMA_COMPLETION_TO_PROMPT, pydantic_program_mode: PydanticProgramMode = PydanticProgramMode.DEFAULT, output_parser: Optional[BaseOutputParser] = None, **kwargs: Any, ) -> None: if not endpoint_name: raise ValueError( "Missing required argument:`endpoint_name`" " Please specify the endpoint_name" ) endpoint_kwargs = endpoint_kwargs or {} model_kwargs = model_kwargs or {} model_kwargs["temperature"] = temperature content_handler = content_handler self._completion_to_prompt = completion_to_prompt self._client = get_aws_service_client( service_name="sagemaker-runtime", profile_name=profile_name, region_name=region_name, aws_access_key_id=aws_access_key_id, aws_secret_access_key=aws_secret_access_key, aws_session_token=aws_session_token, max_retries=max_retries, timeout=timeout, ) callback_manager = callback_manager or CallbackManager([]) super().__init__( endpoint_name=endpoint_name, endpoint_kwargs=endpoint_kwargs, model_kwargs=model_kwargs, content_handler=content_handler, profile_name=profile_name, timeout=timeout, max_retries=max_retries, callback_manager=callback_manager, system_prompt=system_prompt, messages_to_prompt=messages_to_prompt, pydantic_program_mode=pydantic_program_mode, output_parser=output_parser, ) @llm_completion_callback() def complete( self, prompt: str, formatted: bool = False, **kwargs: Any ) -> CompletionResponse: model_kwargs = {**self.model_kwargs, **kwargs} if not formatted: prompt = self._completion_to_prompt(prompt, self.system_prompt) request_body = self.content_handler.serialize_input(prompt, model_kwargs) response = self._client.invoke_endpoint( EndpointName=self.endpoint_name, Body=request_body, ContentType=self.content_handler.content_type, Accept=self.content_handler.accept, **self.endpoint_kwargs, ) response["Body"] = self.content_handler.deserialize_output(response["Body"]) text = self.content_handler.remove_prefix(response["Body"], prompt) return CompletionResponse( text=text, raw=response, additional_kwargs={ "model_kwargs": model_kwargs, "endpoint_kwargs": self.endpoint_kwargs, }, ) @llm_completion_callback() def stream_complete( self, prompt: str, formatted: bool = False, **kwargs: Any ) -> CompletionResponseGen: model_kwargs = {**self.model_kwargs, **kwargs} if not formatted: prompt = self._completion_to_prompt(prompt, self.system_prompt) request_body = self.content_handler.serialize_input(prompt, model_kwargs) def gen() -> CompletionResponseGen: raw_text = "" prev_clean_text = "" for response in self._client.invoke_endpoint_with_response_stream( EndpointName=self.endpoint_name, Body=request_body, ContentType=self.content_handler.content_type, Accept=self.content_handler.accept, **self.endpoint_kwargs, )["Body"]: delta = self.content_handler.deserialize_streaming_output( response["PayloadPart"]["Bytes"] ) raw_text += delta clean_text = self.content_handler.remove_prefix(raw_text, prompt) delta = clean_text[len(prev_clean_text) :] prev_clean_text = clean_text yield CompletionResponse(text=clean_text, delta=delta, raw=response) return gen() @llm_chat_callback() def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse: prompt = self.messages_to_prompt(messages) completion_response = self.complete(prompt, formatted=True, **kwargs) return completion_response_to_chat_response(completion_response) @llm_chat_callback() def stream_chat( self, messages: Sequence[ChatMessage], **kwargs: Any ) -> ChatResponseGen: prompt = self.messages_to_prompt(messages) completion_response_gen = self.stream_complete(prompt, formatted=True, **kwargs) return stream_completion_response_to_chat_response(completion_response_gen) @llm_chat_callback() async def achat( self, messages: Sequence[ChatMessage], **kwargs: Any, ) -> ChatResponse: raise NotImplementedError @llm_chat_callback() async def astream_chat( self, messages: Sequence[ChatMessage], **kwargs: Any, ) -> ChatResponseAsyncGen: raise NotImplementedError @llm_completion_callback() async def acomplete( self, prompt: str, formatted: bool = False, **kwargs: Any ) -> CompletionResponse: raise NotImplementedError @llm_completion_callback() async def astream_complete( self, prompt: str, formatted: bool = False, **kwargs: Any ) -> CompletionResponseAsyncGen: raise NotImplementedError @classmethod def class_name(cls) -> str: return "SageMakerLLM" @property def metadata(self) -> LLMMetadata: """LLM metadata.""" return LLMMetadata( model_name=self.endpoint_name, ) # Deprecated, kept for backwards compatibility SageMakerLLMEndPoint = SageMakerLLM