"""Image parser. Contains parsers for image files. """ import re from pathlib import Path from typing import Dict, List, Optional from llama_index.readers.base import BaseReader from llama_index.schema import Document, ImageDocument from llama_index.utils import infer_torch_device class ImageReader(BaseReader): """Image parser. Extract text from images using DONUT. """ def __init__( self, parser_config: Optional[Dict] = None, keep_image: bool = False, parse_text: bool = False, ): """Init parser.""" if parser_config is None and parse_text: try: import sentencepiece # noqa import torch # noqa from PIL import Image # noqa from transformers import DonutProcessor, VisionEncoderDecoderModel except ImportError: raise ImportError( "Please install extra dependencies that are required for " "the ImageCaptionReader: " "`pip install torch transformers sentencepiece Pillow`" ) processor = DonutProcessor.from_pretrained( "naver-clova-ix/donut-base-finetuned-cord-v2" ) model = VisionEncoderDecoderModel.from_pretrained( "naver-clova-ix/donut-base-finetuned-cord-v2" ) parser_config = {"processor": processor, "model": model} self._parser_config = parser_config self._keep_image = keep_image self._parse_text = parse_text def load_data( self, file: Path, extra_info: Optional[Dict] = None ) -> List[Document]: """Parse file.""" from PIL import Image from llama_index.img_utils import img_2_b64 # load document image image = Image.open(file) if image.mode != "RGB": image = image.convert("RGB") # Encode image into base64 string and keep in document image_str: Optional[str] = None if self._keep_image: image_str = img_2_b64(image) # Parse image into text text_str: str = "" if self._parse_text: assert self._parser_config is not None model = self._parser_config["model"] processor = self._parser_config["processor"] device = infer_torch_device() model.to(device) # prepare decoder inputs task_prompt = "" decoder_input_ids = processor.tokenizer( task_prompt, add_special_tokens=False, return_tensors="pt" ).input_ids pixel_values = processor(image, return_tensors="pt").pixel_values outputs = model.generate( pixel_values.to(device), decoder_input_ids=decoder_input_ids.to(device), max_length=model.decoder.config.max_position_embeddings, early_stopping=True, pad_token_id=processor.tokenizer.pad_token_id, eos_token_id=processor.tokenizer.eos_token_id, use_cache=True, num_beams=3, bad_words_ids=[[processor.tokenizer.unk_token_id]], return_dict_in_generate=True, ) sequence = processor.batch_decode(outputs.sequences)[0] sequence = sequence.replace(processor.tokenizer.eos_token, "").replace( processor.tokenizer.pad_token, "" ) # remove first task start token text_str = re.sub(r"<.*?>", "", sequence, count=1).strip() return [ ImageDocument( text=text_str, image=image_str, image_path=str(file), metadata=extra_info or {}, ) ]