"""DeepLake vector store index. An index that is built within DeepLake. """ import logging from typing import Any, List, Optional, cast from llama_index.bridge.pydantic import PrivateAttr from llama_index.schema import BaseNode, MetadataMode from llama_index.vector_stores.types import ( BasePydanticVectorStore, VectorStoreQuery, VectorStoreQueryResult, ) from llama_index.vector_stores.utils import ( metadata_dict_to_node, node_to_metadata_dict, ) try: from deeplake.core.vectorstore.deeplake_vectorstore import VectorStore DEEPLAKE_INSTALLED = True except ImportError: DEEPLAKE_INSTALLED = False logger = logging.getLogger(__name__) class DeepLakeVectorStore(BasePydanticVectorStore): """The DeepLake Vector Store. In this vector store we store the text, its embedding and a few pieces of its metadata in a deeplake dataset. This implementation allows the use of an already existing deeplake dataset if it is one that was created this vector store. It also supports creating a new one if the dataset doesn't exist or if `overwrite` is set to True. """ stores_text: bool = True flat_metadata: bool = True ingestion_batch_size: int num_workers: int token: Optional[str] read_only: Optional[bool] dataset_path: str _embedding_dimension: int = PrivateAttr() _ttl_seconds: Optional[int] = PrivateAttr() _deeplake_db: Any = PrivateAttr() _deeplake_db_collection: Any = PrivateAttr() _vectorstore: "VectorStore" = PrivateAttr() _id_tensor_name: str = PrivateAttr() def __init__( self, dataset_path: str = "llama_index", token: Optional[str] = None, read_only: Optional[bool] = False, ingestion_batch_size: int = 1024, ingestion_num_workers: int = 4, overwrite: bool = False, exec_option: Optional[str] = None, verbose: bool = True, **kwargs: Any, ) -> None: """ Args: dataset_path (str): Path to the deeplake dataset, where data will be stored. Defaults to "llama_index". overwrite (bool, optional): Whether to overwrite existing dataset with same name. Defaults to False. token (str, optional): the deeplake token that allows you to access the dataset with proper access. Defaults to None. read_only (bool, optional): Whether to open the dataset with read only mode. ingestion_batch_size (int): used for controlling batched data ingestion to deeplake dataset. Defaults to 1024. ingestion_num_workers (int): number of workers to use during data ingestion. Defaults to 4. overwrite (bool): Whether to overwrite existing dataset with the new dataset with the same name. exec_option (str): Default method for search execution. It could be either It could be either ``"python"``, ``"compute_engine"`` or ``"tensor_db"``. Defaults to ``"python"``. - ``python`` - Pure-python implementation that runs on the client and can be used for data stored anywhere. WARNING: using this option with big datasets is discouraged because it can lead to memory issues. - ``compute_engine`` - Performant C++ implementation of the Deep Lake Compute Engine that runs on the client and can be used for any data stored in or connected to Deep Lake. It cannot be used with in-memory or local datasets. - ``tensor_db`` - Performant and fully-hosted Managed Tensor Database that is responsible for storage and query execution. Only available for data stored in the Deep Lake Managed Database. Store datasets in this database by specifying runtime = {"tensor_db": True} during dataset creation. verbose (bool): Specify if verbose output is enabled. Default is True. **kwargs (Any): Additional keyword arguments. Raises: ImportError: Unable to import `deeplake`. """ super().__init__( dataset_path=dataset_path, token=token, read_only=read_only, ingestion_batch_size=ingestion_batch_size, num_workers=ingestion_num_workers, ) if not DEEPLAKE_INSTALLED: raise ImportError( "Could not import deeplake python package. " "Please install it with `pip install deeplake`." ) self._vectorstore = VectorStore( path=dataset_path, ingestion_batch_size=ingestion_batch_size, num_workers=ingestion_num_workers, token=token, read_only=read_only, exec_option=exec_option, overwrite=overwrite, verbose=verbose, **kwargs, ) self._id_tensor_name = "ids" if "ids" in self._vectorstore.tensors() else "id" @property def client(self) -> Any: """Get client. Returns: Any: DeepLake vectorstore dataset. """ return self._vectorstore.dataset def add(self, nodes: List[BaseNode], **add_kwargs: Any) -> List[str]: """Add the embeddings and their nodes into DeepLake. Args: nodes (List[BaseNode]): List of nodes with embeddings to insert. Returns: List[str]: List of ids inserted. """ embedding = [] metadata = [] id_ = [] text = [] for node in nodes: embedding.append(node.get_embedding()) metadata.append( node_to_metadata_dict( node, remove_text=False, flat_metadata=self.flat_metadata ) ) id_.append(node.node_id) text.append(node.get_content(metadata_mode=MetadataMode.NONE)) kwargs = { "embedding": embedding, "metadata": metadata, self._id_tensor_name: id_, "text": text, } return self._vectorstore.add( return_ids=True, **kwargs, ) def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None: """ Delete nodes using with ref_doc_id. Args: ref_doc_id (str): The doc_id of the document to delete. """ self._vectorstore.delete(filter={"metadata": {"doc_id": ref_doc_id}}) def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult: """Query index for top k most similar nodes. Args: query (VectorStoreQuery): VectorStoreQuery class input, it has the following attributes: 1. query_embedding (List[float]): query embedding 2. similarity_top_k (int): top k most similar nodes deep_memory (bool): Whether to use deep memory for query execution. Returns: VectorStoreQueryResult """ query_embedding = cast(List[float], query.query_embedding) exec_option = kwargs.get("exec_option") deep_memory = kwargs.get("deep_memory") data = self._vectorstore.search( embedding=query_embedding, exec_option=exec_option, k=query.similarity_top_k, filter=query.filters, deep_memory=deep_memory, ) similarities = data["score"] ids = data[self._id_tensor_name] metadatas = data["metadata"] nodes = [] for metadata in metadatas: nodes.append(metadata_dict_to_node(metadata)) return VectorStoreQueryResult(nodes=nodes, similarities=similarities, ids=ids)