"""MongoDB Vector store index. An index that is built on top of an existing vector store. """ import logging import os from typing import Any, Dict, List, Optional, cast from llama_index.schema import BaseNode, MetadataMode, TextNode from llama_index.vector_stores.types import ( MetadataFilters, VectorStore, VectorStoreQuery, VectorStoreQueryResult, ) from llama_index.vector_stores.utils import ( legacy_metadata_dict_to_node, metadata_dict_to_node, node_to_metadata_dict, ) logger = logging.getLogger(__name__) def _to_mongodb_filter(standard_filters: MetadataFilters) -> Dict: """Convert from standard dataclass to filter dict.""" filters = {} for filter in standard_filters.legacy_filters(): filters[filter.key] = filter.value return filters class MongoDBAtlasVectorSearch(VectorStore): """MongoDB Atlas Vector Store. To use, you should have both: - the ``pymongo`` python package installed - a connection string associated with a MongoDB Atlas Cluster that has an Atlas Vector Search index """ stores_text: bool = True flat_metadata: bool = True def __init__( self, mongodb_client: Optional[Any] = None, db_name: str = "default_db", collection_name: str = "default_collection", index_name: str = "default", id_key: str = "id", embedding_key: str = "embedding", text_key: str = "text", metadata_key: str = "metadata", insert_kwargs: Optional[Dict] = None, **kwargs: Any, ) -> None: """Initialize the vector store. Args: mongodb_client: A MongoDB client. db_name: A MongoDB database name. collection_name: A MongoDB collection name. index_name: A MongoDB Atlas Vector Search index name. id_key: The data field to use as the id. embedding_key: A MongoDB field that will contain the embedding for each document. text_key: A MongoDB field that will contain the text for each document. metadata_key: A MongoDB field that will contain the metadata for each document. insert_kwargs: The kwargs used during `insert`. """ import_err_msg = "`pymongo` package not found, please run `pip install pymongo`" try: from importlib.metadata import version from pymongo import MongoClient from pymongo.driver_info import DriverInfo except ImportError: raise ImportError(import_err_msg) if mongodb_client is not None: self._mongodb_client = cast(MongoClient, mongodb_client) else: if "MONGO_URI" not in os.environ: raise ValueError( "Must specify MONGO_URI via env variable " "if not directly passing in client." ) self._mongodb_client = MongoClient( os.environ["MONGO_URI"], driver=DriverInfo(name="llama-index", version=version("llama-index")), ) self._collection = self._mongodb_client[db_name][collection_name] self._index_name = index_name self._embedding_key = embedding_key self._id_key = id_key self._text_key = text_key self._metadata_key = metadata_key self._insert_kwargs = insert_kwargs or {} def add( self, nodes: List[BaseNode], **add_kwargs: Any, ) -> List[str]: """Add nodes to index. Args: nodes: List[BaseNode]: list of nodes with embeddings Returns: A List of ids for successfully added nodes. """ ids = [] data_to_insert = [] for node in nodes: metadata = node_to_metadata_dict( node, remove_text=True, flat_metadata=self.flat_metadata ) entry = { self._id_key: node.node_id, self._embedding_key: node.get_embedding(), self._text_key: node.get_content(metadata_mode=MetadataMode.NONE) or "", self._metadata_key: metadata, } data_to_insert.append(entry) ids.append(node.node_id) logger.debug("Inserting data into MongoDB: %s", data_to_insert) insert_result = self._collection.insert_many( data_to_insert, **self._insert_kwargs ) logger.debug("Result of insert: %s", insert_result) return ids def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None: """ Delete nodes using with ref_doc_id. Args: ref_doc_id (str): The doc_id of the document to delete. """ # delete by filtering on the doc_id metadata self._collection.delete_one( filter={self._metadata_key + ".ref_doc_id": ref_doc_id}, **delete_kwargs ) @property def client(self) -> Any: """Return MongoDB client.""" return self._mongodb_client def _query(self, query: VectorStoreQuery) -> VectorStoreQueryResult: params: Dict[str, Any] = { "queryVector": query.query_embedding, "path": self._embedding_key, "numCandidates": query.similarity_top_k * 10, "limit": query.similarity_top_k, "index": self._index_name, } if query.filters: params["filter"] = _to_mongodb_filter(query.filters) query_field = {"$vectorSearch": params} pipeline = [ query_field, { "$project": { "score": {"$meta": "vectorSearchScore"}, self._embedding_key: 0, } }, ] logger.debug("Running query pipeline: %s", pipeline) cursor = self._collection.aggregate(pipeline) # type: ignore top_k_nodes = [] top_k_ids = [] top_k_scores = [] for res in cursor: text = res.pop(self._text_key) score = res.pop("score") id = res.pop(self._id_key) metadata_dict = res.pop(self._metadata_key) try: node = metadata_dict_to_node(metadata_dict) node.set_content(text) except Exception: # NOTE: deprecated legacy logic for backward compatibility metadata, node_info, relationships = legacy_metadata_dict_to_node( metadata_dict ) node = TextNode( text=text, id_=id, metadata=metadata, start_char_idx=node_info.get("start", None), end_char_idx=node_info.get("end", None), relationships=relationships, ) top_k_ids.append(id) top_k_nodes.append(node) top_k_scores.append(score) result = VectorStoreQueryResult( nodes=top_k_nodes, similarities=top_k_scores, ids=top_k_ids ) logger.debug("Result of query: %s", result) return result def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult: """Query index for top k most similar nodes. Args: query: a VectorStoreQuery object. Returns: A VectorStoreQueryResult containing the results of the query. """ return self._query(query)