from fastapi import APIRouter, HTTPException, Query from pydantic import BaseModel from app.core.embedding import embedder from app.core.config import settings from llama_index.vector_stores.faiss import FaissVectorStore from llama_index import VectorStoreIndex, ServiceContext, StorageContext, load_index_from_storage import os import logging import faiss # 引入faiss router = APIRouter() # 设置日志记录器 logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) class QueryRequest(BaseModel): query: str @router.post("/search") def search_docs(request: QueryRequest, user_id: str = Query(..., description="用户ID")): try: logger.info(f"Received search request from user: {user_id} with query: {request.query}") # 修正后的索引路径,确保指向整个目录,而不是单个文件 index_path = os.path.join("index_data", user_id) # 使用整个目录路径 logger.info(f"Looking for index at path: {index_path}") # 检查索引目录是否存在 if not os.path.exists(index_path): logger.error(f"Index not found for user: {user_id} at {index_path}") raise HTTPException(status_code=404, detail="用户索引不存在") # 加载 Faiss 索引 faiss_index_file = os.path.join(index_path, "index.faiss") # 指定faiss索引文件路径 if not os.path.exists(faiss_index_file): logger.error(f"Faiss index not found at {faiss_index_file}") raise HTTPException(status_code=404, detail="Faiss索引文件未找到") faiss_index = faiss.read_index(faiss_index_file) # 使用faiss加载索引文件 logger.info("Faiss index loaded successfully.") # 创建 FaissVectorStore 实例 vector_store = FaissVectorStore(faiss_index=faiss_index) logger.info("FaissVectorStore created successfully.") # 创建 StorageContext 实例(确保同时加载文本和向量) storage_context = StorageContext.from_defaults(persist_dir=index_path, vector_store=vector_store) logger.info("Storage context created successfully.") # 创建 ServiceContext 实例 service_context = ServiceContext.from_defaults(embed_model=embedder, llm=None) logger.info("Service context created successfully.") # 使用 load_index_from_storage 加载索引 index = load_index_from_storage(storage_context) logger.info("VectorStoreIndex loaded successfully.") # 检索结果(包含文本) retriever = index.as_retriever(similarity_top_k=settings.TOP_K) logger.info(f"Retrieving top {settings.TOP_K} results for query: {request.query}") nodes = retriever.retrieve(request.query) # 打印出每个结果的向量和文本 for i, node in enumerate(nodes): # 打印文本 logger.info(f"Result {i+1}:") logger.info(f" Text: {node.get_content()}") # 打印文本 # 打印向量及其长度 embedding = node.embedding logger.info(f" Embedding (Vector): {embedding}") # 打印向量 logger.info(f" Embedding Length: {len(embedding)}") # 打印向量的长度(即向量的维度) # 返回检索结果 result = { "user_id": user_id, "query": request.query, "results": [ {"score": float(node.score or 0), "text": node.get_content()} # 确保从 Node 中获取文本 for node in nodes ] } logger.info(f"Search results for user {user_id}: {result}") return result except Exception as e: logger.error(f"Error processing search request: {e}", exc_info=True) raise HTTPException(status_code=500, detail=str(e))