176 lines
5.9 KiB
Python
176 lines
5.9 KiB
Python
import asyncio
|
|
from threading import Thread
|
|
from typing import Any, List, Optional, Type
|
|
|
|
from llama_index.callbacks import CallbackManager, trace_method
|
|
from llama_index.chat_engine.types import (
|
|
AgentChatResponse,
|
|
BaseChatEngine,
|
|
StreamingAgentChatResponse,
|
|
)
|
|
from llama_index.core.llms.types import ChatMessage
|
|
from llama_index.llms.llm import LLM
|
|
from llama_index.memory import BaseMemory, ChatMemoryBuffer
|
|
from llama_index.service_context import ServiceContext
|
|
|
|
|
|
class SimpleChatEngine(BaseChatEngine):
|
|
"""Simple Chat Engine.
|
|
|
|
Have a conversation with the LLM.
|
|
This does not make use of a knowledge base.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
llm: LLM,
|
|
memory: BaseMemory,
|
|
prefix_messages: List[ChatMessage],
|
|
callback_manager: Optional[CallbackManager] = None,
|
|
) -> None:
|
|
self._llm = llm
|
|
self._memory = memory
|
|
self._prefix_messages = prefix_messages
|
|
self.callback_manager = callback_manager or CallbackManager([])
|
|
|
|
@classmethod
|
|
def from_defaults(
|
|
cls,
|
|
service_context: Optional[ServiceContext] = None,
|
|
chat_history: Optional[List[ChatMessage]] = None,
|
|
memory: Optional[BaseMemory] = None,
|
|
memory_cls: Type[BaseMemory] = ChatMemoryBuffer,
|
|
system_prompt: Optional[str] = None,
|
|
prefix_messages: Optional[List[ChatMessage]] = None,
|
|
**kwargs: Any,
|
|
) -> "SimpleChatEngine":
|
|
"""Initialize a SimpleChatEngine from default parameters."""
|
|
service_context = service_context or ServiceContext.from_defaults()
|
|
llm = service_context.llm
|
|
|
|
chat_history = chat_history or []
|
|
memory = memory or memory_cls.from_defaults(chat_history=chat_history, llm=llm)
|
|
|
|
if system_prompt is not None:
|
|
if prefix_messages is not None:
|
|
raise ValueError(
|
|
"Cannot specify both system_prompt and prefix_messages"
|
|
)
|
|
prefix_messages = [
|
|
ChatMessage(content=system_prompt, role=llm.metadata.system_role)
|
|
]
|
|
|
|
prefix_messages = prefix_messages or []
|
|
|
|
return cls(
|
|
llm=llm,
|
|
memory=memory,
|
|
prefix_messages=prefix_messages,
|
|
callback_manager=service_context.callback_manager,
|
|
)
|
|
|
|
@trace_method("chat")
|
|
def chat(
|
|
self, message: str, chat_history: Optional[List[ChatMessage]] = None
|
|
) -> AgentChatResponse:
|
|
if chat_history is not None:
|
|
self._memory.set(chat_history)
|
|
self._memory.put(ChatMessage(content=message, role="user"))
|
|
initial_token_count = len(
|
|
self._memory.tokenizer_fn(
|
|
" ".join([(m.content or "") for m in self._prefix_messages])
|
|
)
|
|
)
|
|
all_messages = self._prefix_messages + self._memory.get(
|
|
initial_token_count=initial_token_count
|
|
)
|
|
|
|
chat_response = self._llm.chat(all_messages)
|
|
ai_message = chat_response.message
|
|
self._memory.put(ai_message)
|
|
|
|
return AgentChatResponse(response=str(chat_response.message.content))
|
|
|
|
@trace_method("chat")
|
|
def stream_chat(
|
|
self, message: str, chat_history: Optional[List[ChatMessage]] = None
|
|
) -> StreamingAgentChatResponse:
|
|
if chat_history is not None:
|
|
self._memory.set(chat_history)
|
|
self._memory.put(ChatMessage(content=message, role="user"))
|
|
initial_token_count = len(
|
|
self._memory.tokenizer_fn(
|
|
" ".join([(m.content or "") for m in self._prefix_messages])
|
|
)
|
|
)
|
|
all_messages = self._prefix_messages + self._memory.get(
|
|
initial_token_count=initial_token_count
|
|
)
|
|
|
|
chat_response = StreamingAgentChatResponse(
|
|
chat_stream=self._llm.stream_chat(all_messages)
|
|
)
|
|
thread = Thread(
|
|
target=chat_response.write_response_to_history, args=(self._memory,)
|
|
)
|
|
thread.start()
|
|
|
|
return chat_response
|
|
|
|
@trace_method("chat")
|
|
async def achat(
|
|
self, message: str, chat_history: Optional[List[ChatMessage]] = None
|
|
) -> AgentChatResponse:
|
|
if chat_history is not None:
|
|
self._memory.set(chat_history)
|
|
self._memory.put(ChatMessage(content=message, role="user"))
|
|
initial_token_count = len(
|
|
self._memory.tokenizer_fn(
|
|
" ".join([(m.content or "") for m in self._prefix_messages])
|
|
)
|
|
)
|
|
all_messages = self._prefix_messages + self._memory.get(
|
|
initial_token_count=initial_token_count
|
|
)
|
|
|
|
chat_response = await self._llm.achat(all_messages)
|
|
ai_message = chat_response.message
|
|
self._memory.put(ai_message)
|
|
|
|
return AgentChatResponse(response=str(chat_response.message.content))
|
|
|
|
@trace_method("chat")
|
|
async def astream_chat(
|
|
self, message: str, chat_history: Optional[List[ChatMessage]] = None
|
|
) -> StreamingAgentChatResponse:
|
|
if chat_history is not None:
|
|
self._memory.set(chat_history)
|
|
self._memory.put(ChatMessage(content=message, role="user"))
|
|
initial_token_count = len(
|
|
self._memory.tokenizer_fn(
|
|
" ".join([(m.content or "") for m in self._prefix_messages])
|
|
)
|
|
)
|
|
all_messages = self._prefix_messages + self._memory.get(
|
|
initial_token_count=initial_token_count
|
|
)
|
|
|
|
chat_response = StreamingAgentChatResponse(
|
|
achat_stream=await self._llm.astream_chat(all_messages)
|
|
)
|
|
thread = Thread(
|
|
target=lambda x: asyncio.run(chat_response.awrite_response_to_history(x)),
|
|
args=(self._memory,),
|
|
)
|
|
thread.start()
|
|
|
|
return chat_response
|
|
|
|
def reset(self) -> None:
|
|
self._memory.reset()
|
|
|
|
@property
|
|
def chat_history(self) -> List[ChatMessage]:
|
|
"""Get chat history."""
|
|
return self._memory.get_all()
|