faiss_rag_enterprise/llama_index/chat_engine/simple.py

176 lines
5.9 KiB
Python

import asyncio
from threading import Thread
from typing import Any, List, Optional, Type
from llama_index.callbacks import CallbackManager, trace_method
from llama_index.chat_engine.types import (
AgentChatResponse,
BaseChatEngine,
StreamingAgentChatResponse,
)
from llama_index.core.llms.types import ChatMessage
from llama_index.llms.llm import LLM
from llama_index.memory import BaseMemory, ChatMemoryBuffer
from llama_index.service_context import ServiceContext
class SimpleChatEngine(BaseChatEngine):
"""Simple Chat Engine.
Have a conversation with the LLM.
This does not make use of a knowledge base.
"""
def __init__(
self,
llm: LLM,
memory: BaseMemory,
prefix_messages: List[ChatMessage],
callback_manager: Optional[CallbackManager] = None,
) -> None:
self._llm = llm
self._memory = memory
self._prefix_messages = prefix_messages
self.callback_manager = callback_manager or CallbackManager([])
@classmethod
def from_defaults(
cls,
service_context: Optional[ServiceContext] = None,
chat_history: Optional[List[ChatMessage]] = None,
memory: Optional[BaseMemory] = None,
memory_cls: Type[BaseMemory] = ChatMemoryBuffer,
system_prompt: Optional[str] = None,
prefix_messages: Optional[List[ChatMessage]] = None,
**kwargs: Any,
) -> "SimpleChatEngine":
"""Initialize a SimpleChatEngine from default parameters."""
service_context = service_context or ServiceContext.from_defaults()
llm = service_context.llm
chat_history = chat_history or []
memory = memory or memory_cls.from_defaults(chat_history=chat_history, llm=llm)
if system_prompt is not None:
if prefix_messages is not None:
raise ValueError(
"Cannot specify both system_prompt and prefix_messages"
)
prefix_messages = [
ChatMessage(content=system_prompt, role=llm.metadata.system_role)
]
prefix_messages = prefix_messages or []
return cls(
llm=llm,
memory=memory,
prefix_messages=prefix_messages,
callback_manager=service_context.callback_manager,
)
@trace_method("chat")
def chat(
self, message: str, chat_history: Optional[List[ChatMessage]] = None
) -> AgentChatResponse:
if chat_history is not None:
self._memory.set(chat_history)
self._memory.put(ChatMessage(content=message, role="user"))
initial_token_count = len(
self._memory.tokenizer_fn(
" ".join([(m.content or "") for m in self._prefix_messages])
)
)
all_messages = self._prefix_messages + self._memory.get(
initial_token_count=initial_token_count
)
chat_response = self._llm.chat(all_messages)
ai_message = chat_response.message
self._memory.put(ai_message)
return AgentChatResponse(response=str(chat_response.message.content))
@trace_method("chat")
def stream_chat(
self, message: str, chat_history: Optional[List[ChatMessage]] = None
) -> StreamingAgentChatResponse:
if chat_history is not None:
self._memory.set(chat_history)
self._memory.put(ChatMessage(content=message, role="user"))
initial_token_count = len(
self._memory.tokenizer_fn(
" ".join([(m.content or "") for m in self._prefix_messages])
)
)
all_messages = self._prefix_messages + self._memory.get(
initial_token_count=initial_token_count
)
chat_response = StreamingAgentChatResponse(
chat_stream=self._llm.stream_chat(all_messages)
)
thread = Thread(
target=chat_response.write_response_to_history, args=(self._memory,)
)
thread.start()
return chat_response
@trace_method("chat")
async def achat(
self, message: str, chat_history: Optional[List[ChatMessage]] = None
) -> AgentChatResponse:
if chat_history is not None:
self._memory.set(chat_history)
self._memory.put(ChatMessage(content=message, role="user"))
initial_token_count = len(
self._memory.tokenizer_fn(
" ".join([(m.content or "") for m in self._prefix_messages])
)
)
all_messages = self._prefix_messages + self._memory.get(
initial_token_count=initial_token_count
)
chat_response = await self._llm.achat(all_messages)
ai_message = chat_response.message
self._memory.put(ai_message)
return AgentChatResponse(response=str(chat_response.message.content))
@trace_method("chat")
async def astream_chat(
self, message: str, chat_history: Optional[List[ChatMessage]] = None
) -> StreamingAgentChatResponse:
if chat_history is not None:
self._memory.set(chat_history)
self._memory.put(ChatMessage(content=message, role="user"))
initial_token_count = len(
self._memory.tokenizer_fn(
" ".join([(m.content or "") for m in self._prefix_messages])
)
)
all_messages = self._prefix_messages + self._memory.get(
initial_token_count=initial_token_count
)
chat_response = StreamingAgentChatResponse(
achat_stream=await self._llm.astream_chat(all_messages)
)
thread = Thread(
target=lambda x: asyncio.run(chat_response.awrite_response_to_history(x)),
args=(self._memory,),
)
thread.start()
return chat_response
def reset(self) -> None:
self._memory.reset()
@property
def chat_history(self) -> List[ChatMessage]:
"""Get chat history."""
return self._memory.get_all()