faiss_rag_enterprise/llama_index/embeddings/elasticsearch.py

180 lines
6.1 KiB
Python

from typing import Any, List
from llama_index.bridge.pydantic import PrivateAttr
from llama_index.embeddings.base import BaseEmbedding
class ElasticsearchEmbedding(BaseEmbedding):
"""Elasticsearch embedding models.
This class provides an interface to generate embeddings using a model deployed
in an Elasticsearch cluster. It requires an Elasticsearch connection object
and the model_id of the model deployed in the cluster.
In Elasticsearch you need to have an embedding model loaded and deployed.
- https://www.elastic.co
/guide/en/elasticsearch/reference/current/infer-trained-model.html
- https://www.elastic.co
/guide/en/machine-learning/current/ml-nlp-deploy-models.html
""" #
_client: Any = PrivateAttr()
model_id: str
input_field: str
@classmethod
def class_name(self) -> str:
return "ElasticsearchEmbedding"
def __init__(
self,
client: Any,
model_id: str,
input_field: str = "text_field",
**kwargs: Any,
):
self._client = client
super().__init__(model_id=model_id, input_field=input_field, **kwargs)
@classmethod
def from_es_connection(
cls,
model_id: str,
es_connection: Any,
input_field: str = "text_field",
) -> BaseEmbedding:
"""
Instantiate embeddings from an existing Elasticsearch connection.
This method provides a way to create an instance of the ElasticsearchEmbedding
class using an existing Elasticsearch connection. The connection object is used
to create an MlClient, which is then used to initialize the
ElasticsearchEmbedding instance.
Args:
model_id (str): The model_id of the model deployed in the Elasticsearch cluster.
es_connection (elasticsearch.Elasticsearch): An existing Elasticsearch
connection object.
input_field (str, optional): The name of the key for the input text field
in the document. Defaults to 'text_field'.
Returns:
ElasticsearchEmbedding: An instance of the ElasticsearchEmbedding class.
Example:
.. code-block:: python
from elasticsearch import Elasticsearch
from llama_index.embeddings import ElasticsearchEmbedding
# Define the model ID and input field name (if different from default)
model_id = "your_model_id"
# Optional, only if different from 'text_field'
input_field = "your_input_field"
# Create Elasticsearch connection
es_connection = Elasticsearch(hosts=["localhost:9200"], basic_auth=("user", "password"))
# Instantiate ElasticsearchEmbedding using the existing connection
embeddings = ElasticsearchEmbedding.from_es_connection(
model_id,
es_connection,
input_field=input_field,
)
"""
try:
from elasticsearch.client import MlClient
except ImportError:
raise ImportError(
"elasticsearch package not found, install with"
"'pip install elasticsearch'"
)
client = MlClient(es_connection)
return cls(client, model_id, input_field=input_field)
@classmethod
def from_credentials(
cls,
model_id: str,
es_url: str,
es_username: str,
es_password: str,
input_field: str = "text_field",
) -> BaseEmbedding:
"""Instantiate embeddings from Elasticsearch credentials.
Args:
model_id (str): The model_id of the model deployed in the Elasticsearch
cluster.
input_field (str): The name of the key for the input text field in the
document. Defaults to 'text_field'.
es_url: (str): The Elasticsearch url to connect to.
es_username: (str): Elasticsearch username.
es_password: (str): Elasticsearch password.
Example:
.. code-block:: python
from llama_index.embeddings import ElasticsearchEmbedding
# Define the model ID and input field name (if different from default)
model_id = "your_model_id"
# Optional, only if different from 'text_field'
input_field = "your_input_field"
embeddings = ElasticsearchEmbedding.from_credentials(
model_id,
input_field=input_field,
es_url="foo",
es_username="bar",
es_password="baz",
)
"""
try:
from elasticsearch import Elasticsearch
from elasticsearch.client import MlClient
except ImportError:
raise ImportError(
"elasticsearch package not found, install with"
"'pip install elasticsearch'"
)
es_connection = Elasticsearch(
hosts=[es_url],
basic_auth=(es_username, es_password),
)
client = MlClient(es_connection)
return cls(client, model_id, input_field=input_field)
def _get_embedding(self, text: str) -> List[float]:
"""
Generate an embedding for a single query text.
Args:
text (str): The query text to generate an embedding for.
Returns:
List[float]: The embedding for the input query text.
"""
response = self._client.infer_trained_model(
model_id=self.model_id,
docs=[{self.input_field: text}],
)
return response["inference_results"][0]["predicted_value"]
def _get_text_embedding(self, text: str) -> List[float]:
return self._get_embedding(text)
def _get_query_embedding(self, query: str) -> List[float]:
return self._get_embedding(query)
async def _aget_query_embedding(self, query: str) -> List[float]:
return self._get_query_embedding(query)
ElasticsearchEmbeddings = ElasticsearchEmbedding