faiss_rag_enterprise/llama_index/node_parser/text/sentence_window.py

134 lines
4.9 KiB
Python

"""Simple node parser."""
from typing import Any, Callable, List, Optional, Sequence
from llama_index.bridge.pydantic import Field
from llama_index.callbacks.base import CallbackManager
from llama_index.node_parser.interface import NodeParser
from llama_index.node_parser.node_utils import build_nodes_from_splits, default_id_func
from llama_index.node_parser.text.utils import split_by_sentence_tokenizer
from llama_index.schema import BaseNode, Document, MetadataMode
from llama_index.utils import get_tqdm_iterable
DEFAULT_WINDOW_SIZE = 3
DEFAULT_WINDOW_METADATA_KEY = "window"
DEFAULT_OG_TEXT_METADATA_KEY = "original_text"
class SentenceWindowNodeParser(NodeParser):
"""Sentence window node parser.
Splits a document into Nodes, with each node being a sentence.
Each node contains a window from the surrounding sentences in the metadata.
Args:
sentence_splitter (Optional[Callable]): splits text into sentences
include_metadata (bool): whether to include metadata in nodes
include_prev_next_rel (bool): whether to include prev/next relationships
"""
sentence_splitter: Callable[[str], List[str]] = Field(
default_factory=split_by_sentence_tokenizer,
description="The text splitter to use when splitting documents.",
exclude=True,
)
window_size: int = Field(
default=DEFAULT_WINDOW_SIZE,
description="The number of sentences on each side of a sentence to capture.",
gt=0,
)
window_metadata_key: str = Field(
default=DEFAULT_WINDOW_METADATA_KEY,
description="The metadata key to store the sentence window under.",
)
original_text_metadata_key: str = Field(
default=DEFAULT_OG_TEXT_METADATA_KEY,
description="The metadata key to store the original sentence in.",
)
@classmethod
def class_name(cls) -> str:
return "SentenceWindowNodeParser"
@classmethod
def from_defaults(
cls,
sentence_splitter: Optional[Callable[[str], List[str]]] = None,
window_size: int = DEFAULT_WINDOW_SIZE,
window_metadata_key: str = DEFAULT_WINDOW_METADATA_KEY,
original_text_metadata_key: str = DEFAULT_OG_TEXT_METADATA_KEY,
include_metadata: bool = True,
include_prev_next_rel: bool = True,
callback_manager: Optional[CallbackManager] = None,
id_func: Optional[Callable[[int, Document], str]] = None,
) -> "SentenceWindowNodeParser":
callback_manager = callback_manager or CallbackManager([])
sentence_splitter = sentence_splitter or split_by_sentence_tokenizer()
id_func = id_func or default_id_func
return cls(
sentence_splitter=sentence_splitter,
window_size=window_size,
window_metadata_key=window_metadata_key,
original_text_metadata_key=original_text_metadata_key,
include_metadata=include_metadata,
include_prev_next_rel=include_prev_next_rel,
callback_manager=callback_manager,
id_func=id_func,
)
def _parse_nodes(
self,
nodes: Sequence[BaseNode],
show_progress: bool = False,
**kwargs: Any,
) -> List[BaseNode]:
"""Parse document into nodes."""
all_nodes: List[BaseNode] = []
nodes_with_progress = get_tqdm_iterable(nodes, show_progress, "Parsing nodes")
for node in nodes_with_progress:
self.sentence_splitter(node.get_content(metadata_mode=MetadataMode.NONE))
nodes = self.build_window_nodes_from_documents([node])
all_nodes.extend(nodes)
return all_nodes
def build_window_nodes_from_documents(
self, documents: Sequence[Document]
) -> List[BaseNode]:
"""Build window nodes from documents."""
all_nodes: List[BaseNode] = []
for doc in documents:
text = doc.text
text_splits = self.sentence_splitter(text)
nodes = build_nodes_from_splits(
text_splits,
doc,
id_func=self.id_func,
)
# add window to each node
for i, node in enumerate(nodes):
window_nodes = nodes[
max(0, i - self.window_size) : min(i + self.window_size, len(nodes))
]
node.metadata[self.window_metadata_key] = " ".join(
[n.text for n in window_nodes]
)
node.metadata[self.original_text_metadata_key] = node.text
# exclude window metadata from embed and llm
node.excluded_embed_metadata_keys.extend(
[self.window_metadata_key, self.original_text_metadata_key]
)
node.excluded_llm_metadata_keys.extend(
[self.window_metadata_key, self.original_text_metadata_key]
)
all_nodes.extend(nodes)
return all_nodes