faiss_rag_enterprise/llama_index/vector_stores/awadb.py

204 lines
5.9 KiB
Python

"""AwaDB vector store index.
An index that is built on top of an existing vector store.
"""
import logging
import uuid
from typing import Any, List, Optional, Set
from llama_index.schema import BaseNode, MetadataMode, TextNode
from llama_index.vector_stores.types import (
VectorStore,
VectorStoreQuery,
VectorStoreQueryResult,
)
from llama_index.vector_stores.utils import (
legacy_metadata_dict_to_node,
metadata_dict_to_node,
node_to_metadata_dict,
)
logger = logging.getLogger(__name__)
class AwaDBVectorStore(VectorStore):
"""AwaDB vector store.
In this vector store, embeddings are stored within a AwaDB table.
During query time, the index uses AwaDB to query for the top
k most similar nodes.
Args:
chroma_collection (chromadb.api.models.Collection.Collection):
ChromaDB collection instance
"""
flat_metadata: bool = True
stores_text: bool = True
DEFAULT_TABLE_NAME = "llamaindex_awadb"
@property
def client(self) -> Any:
"""Get AwaDB client."""
return self.awadb_client
def __init__(
self,
table_name: str = DEFAULT_TABLE_NAME,
log_and_data_dir: Optional[str] = None,
**kwargs: Any,
) -> None:
"""Initialize with AwaDB client.
If table_name is not specified,
a random table name of `DEFAULT_TABLE_NAME + last segment of uuid`
would be created automatically.
Args:
table_name: Name of the table created, default DEFAULT_TABLE_NAME.
log_and_data_dir: Optional the root directory of log and data.
kwargs: Any possible extend parameters in the future.
Returns:
None.
"""
import_err_msg = "`awadb` package not found, please run `pip install awadb`"
try:
import awadb
except ImportError:
raise ImportError(import_err_msg)
if log_and_data_dir is not None:
self.awadb_client = awadb.Client(log_and_data_dir)
else:
self.awadb_client = awadb.Client()
if table_name == self.DEFAULT_TABLE_NAME:
table_name += "_"
table_name += str(uuid.uuid4()).split("-")[-1]
self.awadb_client.Create(table_name)
def add(
self,
nodes: List[BaseNode],
**add_kwargs: Any,
) -> List[str]:
"""Add nodes to AwaDB.
Args:
nodes: List[BaseNode]: list of nodes with embeddings
Returns:
Added node ids
"""
if not self.awadb_client:
raise ValueError("AwaDB client not initialized")
embeddings = []
metadatas = []
ids = []
texts = []
for node in nodes:
embeddings.append(node.get_embedding())
metadatas.append(
node_to_metadata_dict(
node, remove_text=True, flat_metadata=self.flat_metadata
)
)
ids.append(node.node_id)
texts.append(node.get_content(metadata_mode=MetadataMode.NONE) or "")
self.awadb_client.AddTexts(
"embedding_text",
"text_embedding",
texts,
embeddings,
metadatas,
is_duplicate_texts=False,
ids=ids,
)
return ids
def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
"""Delete nodes using with ref_doc_id.
Args:
ref_doc_id (str): The doc_id of the document to delete.
Returns:
None
"""
if len(ref_doc_id) == 0:
return
ids: List[str] = []
ids.append(ref_doc_id)
self.awadb_client.Delete(ids)
def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
"""Query index for top k most similar nodes.
Args:
query : vector store query
Returns:
VectorStoreQueryResult: Query results
"""
meta_filters = {}
if query.filters is not None:
for filter in query.filters.legacy_filters():
meta_filters[filter.key] = filter.value
not_include_fields: Set[str] = {"text_embedding"}
results = self.awadb_client.Search(
query=query.query_embedding,
topn=query.similarity_top_k,
meta_filter=meta_filters,
not_include_fields=not_include_fields,
)
nodes = []
similarities = []
ids = []
for item_detail in results[0]["ResultItems"]:
content = ""
meta_data = {}
node_id = ""
for item_key in item_detail:
if item_key == "embedding_text":
content = item_detail[item_key]
continue
elif item_key == "_id":
node_id = item_detail[item_key]
ids.append(node_id)
continue
elif item_key == "score":
similarities.append(item_detail[item_key])
continue
meta_data[item_key] = item_detail[item_key]
try:
node = metadata_dict_to_node(meta_data)
node.set_content(content)
except Exception:
# NOTE: deprecated legacy logic for backward compatibility
metadata, node_info, relationships = legacy_metadata_dict_to_node(
meta_data
)
node = TextNode(
text=content,
id_=node_id,
metadata=metadata,
start_char_idx=node_info.get("start", None),
end_char_idx=node_info.get("end", None),
relationships=relationships,
)
nodes.append(node)
return VectorStoreQueryResult(nodes=nodes, similarities=similarities, ids=ids)