faiss_rag_enterprise/llama_index/vector_stores/azurecosmosmongo.py

249 lines
8.6 KiB
Python

"""Azure CosmosDB MongoDB vCore Vector store index.
An index that is built on top of an existing vector store.
"""
import logging
import os
from typing import Any, Dict, List, Optional, cast
from llama_index.schema import BaseNode, MetadataMode, TextNode
from llama_index.vector_stores.types import (
VectorStore,
VectorStoreQuery,
VectorStoreQueryResult,
)
from llama_index.vector_stores.utils import (
legacy_metadata_dict_to_node,
metadata_dict_to_node,
node_to_metadata_dict,
)
logger = logging.getLogger(__name__)
class AzureCosmosDBMongoDBVectorSearch(VectorStore):
"""Azure CosmosDB MongoDB vCore Vector Store.
To use, you should have both:
- the ``pymongo`` python package installed
- a connection string associated with an Azure Cosmodb MongoDB vCore Cluster
"""
stores_text: bool = True
flat_metadata: bool = True
def __init__(
self,
mongodb_client: Optional[Any] = None,
db_name: str = "default_db",
collection_name: str = "default_collection",
index_name: str = "default_vector_search_index",
id_key: str = "id",
embedding_key: str = "content_vector",
text_key: str = "text",
metadata_key: str = "metadata",
cosmos_search_kwargs: Optional[Dict] = None,
insert_kwargs: Optional[Dict] = None,
**kwargs: Any,
) -> None:
"""Initialize the vector store.
Args:
mongodb_client: An Azure CosmoDB MongoDB client (type: MongoClient, shown any for lazy import).
db_name: An Azure CosmosDB MongoDB database name.
collection_name: An Azure CosmosDB collection name.
index_name: An Azure CosmosDB MongoDB vCore Vector Search index name.
id_key: The data field to use as the id.
embedding_key: An Azure CosmosDB MongoDB field that will contain
the embedding for each document.
text_key: An Azure CosmosDB MongoDB field that will contain the text for each document.
metadata_key: An Azure CosmosDB MongoDB field that will contain
the metadata for each document.
cosmos_search_kwargs: An Azure CosmosDB MongoDB field that will
contain search options, such as kind, numLists, similarity, and dimensions.
insert_kwargs: The kwargs used during `insert`.
"""
import_err_msg = "`pymongo` package not found, please run `pip install pymongo`"
try:
import pymongo
except ImportError:
raise ImportError(import_err_msg)
if mongodb_client is not None:
self._mongodb_client = cast(pymongo.MongoClient, mongodb_client)
else:
if "AZURE_COSMOSDB_MONGODB_URI" not in os.environ:
raise ValueError(
"Must specify Azure cosmodb 'AZURE_COSMOSDB_MONGODB_URI' via env variable "
"if not directly passing in client."
)
self._mongodb_client = pymongo.MongoClient(
os.environ["AZURE_COSMOSDB_MONGODB_URI"]
)
self._collection = self._mongodb_client[db_name][collection_name]
self._index_name = index_name
self._embedding_key = embedding_key
self._id_key = id_key
self._text_key = text_key
self._metadata_key = metadata_key
self._insert_kwargs = insert_kwargs or {}
self._db_name = db_name
self._collection_name = collection_name
self._cosmos_search_kwargs = cosmos_search_kwargs or {}
self._create_vector_search_index()
def _create_vector_search_index(self) -> None:
db = self._mongodb_client[self._db_name]
db.command(
{
"createIndexes": self._collection_name,
"indexes": [
{
"name": self._index_name,
"key": {self._embedding_key: "cosmosSearch"},
"cosmosSearchOptions": {
"kind": self._cosmos_search_kwargs.get(
"kind", "vector-ivf"
),
"numLists": self._cosmos_search_kwargs.get("numLists", 1),
"similarity": self._cosmos_search_kwargs.get(
"similarity", "COS"
),
"dimensions": self._cosmos_search_kwargs.get(
"dimensions", 1536
),
},
}
],
}
)
def add(
self,
nodes: List[BaseNode],
**add_kwargs: Any,
) -> List[str]:
"""Add nodes to index.
Args:
nodes: List[BaseNode]: list of nodes with embeddings
Returns:
A List of ids for successfully added nodes.
"""
ids = []
data_to_insert = []
for node in nodes:
metadata = node_to_metadata_dict(
node, remove_text=True, flat_metadata=self.flat_metadata
)
entry = {
self._id_key: node.node_id,
self._embedding_key: node.get_embedding(),
self._text_key: node.get_content(metadata_mode=MetadataMode.NONE) or "",
self._metadata_key: metadata,
}
data_to_insert.append(entry)
ids.append(node.node_id)
logger.debug("Inserting data into MongoDB: %s", data_to_insert)
insert_result = self._collection.insert_many(
data_to_insert, **self._insert_kwargs
)
logger.debug("Result of insert: %s", insert_result)
return ids
def delete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
"""
Delete nodes using with ref_doc_id.
Args:
ref_doc_id (str): The doc_id of the document to delete.
"""
# delete by filtering on the doc_id metadata
self._collection.delete_one(
filter={self._metadata_key + ".ref_doc_id": ref_doc_id}, **delete_kwargs
)
@property
def client(self) -> Any:
"""Return MongoDB client."""
return self._mongodb_client
def _query(self, query: VectorStoreQuery) -> VectorStoreQueryResult:
params: Dict[str, Any] = {
"vector": query.query_embedding,
"path": self._embedding_key,
"k": query.similarity_top_k,
}
if query.filters is not None:
raise ValueError(
"Metadata filters not implemented for azure cosmosdb mongodb yet."
)
query_field = {"$search": {"cosmosSearch": params, "returnStoredSource": True}}
pipeline = [
query_field,
{
"$project": {
"similarityScore": {"$meta": "searchScore"},
"document": "$$ROOT",
}
},
]
logger.debug("Running query pipeline: %s", pipeline)
cursor = self._collection.aggregate(pipeline) # type: ignore
top_k_nodes = []
top_k_ids = []
top_k_scores = []
for res in cursor:
text = res["document"].pop(self._text_key)
score = res.pop("similarityScore")
id = res["document"].pop(self._id_key)
metadata_dict = res["document"].pop(self._metadata_key)
try:
node = metadata_dict_to_node(metadata_dict)
node.set_content(text)
except Exception:
# NOTE: deprecated legacy logic for backward compatibility
metadata, node_info, relationships = legacy_metadata_dict_to_node(
metadata_dict
)
node = TextNode(
text=text,
id_=id,
metadata=metadata,
start_char_idx=node_info.get("start", None),
end_char_idx=node_info.get("end", None),
relationships=relationships,
)
top_k_ids.append(id)
top_k_nodes.append(node)
top_k_scores.append(score)
result = VectorStoreQueryResult(
nodes=top_k_nodes, similarities=top_k_scores, ids=top_k_ids
)
logger.debug("Result of query: %s", result)
return result
def query(self, query: VectorStoreQuery, **kwargs: Any) -> VectorStoreQueryResult:
"""Query index for top k most similar nodes.
Args:
query: a VectorStoreQuery object.
Returns:
A VectorStoreQueryResult containing the results of the query.
"""
return self._query(query)