faiss_rag_enterprise/llama_index/evaluation/answer_relevancy.py

145 lines
5.2 KiB
Python

"""Relevancy evaluation."""
from __future__ import annotations
import asyncio
import re
from typing import Any, Callable, Optional, Sequence, Tuple
from llama_index import ServiceContext
from llama_index.evaluation.base import BaseEvaluator, EvaluationResult
from llama_index.prompts import BasePromptTemplate, PromptTemplate
from llama_index.prompts.mixin import PromptDictType
DEFAULT_EVAL_TEMPLATE = PromptTemplate(
"Your task is to evaluate if the response is relevant to the query.\n"
"The evaluation should be performed in a step-by-step manner by answering the following questions:\n"
"1. Does the provided response match the subject matter of the user's query?\n"
"2. Does the provided response attempt to address the focus or perspective "
"on the subject matter taken on by the user's query?\n"
"Each question above is worth 1 point. Provide detailed feedback on response according to the criteria questions above "
"After your feedback provide a final result by strictly following this format: '[RESULT] followed by the integer number representing the total score assigned to the response'\n\n"
"Query: \n {query}\n"
"Response: \n {response}\n"
"Feedback:"
)
_DEFAULT_SCORE_THRESHOLD = 2.0
def _default_parser_function(output_str: str) -> Tuple[Optional[float], Optional[str]]:
# Pattern to match the feedback and response
# This pattern looks for any text ending with '[RESULT]' followed by a number
pattern = r"([\s\S]+)(?:\[RESULT\]\s*)(\d)"
# Using regex to find all matches
result = re.search(pattern, output_str)
# Check if any match is found
if result:
# Assuming there's only one match in the text, extract feedback and response
feedback, score = result.groups()
score = float(score) if score is not None else score
return score, feedback.strip()
else:
return None, None
class AnswerRelevancyEvaluator(BaseEvaluator):
"""Answer relevancy evaluator.
Evaluates the relevancy of response to a query.
This evaluator considers the query string and response string.
Args:
service_context(Optional[ServiceContext]):
The service context to use for evaluation.
raise_error(Optional[bool]):
Whether to raise an error if the response is invalid.
Defaults to False.
eval_template(Optional[Union[str, BasePromptTemplate]]):
The template to use for evaluation.
refine_template(Optional[Union[str, BasePromptTemplate]]):
The template to use for refinement.
"""
def __init__(
self,
service_context: ServiceContext | None = None,
raise_error: bool = False,
eval_template: str | BasePromptTemplate | None = None,
score_threshold: float = _DEFAULT_SCORE_THRESHOLD,
parser_function: Callable[
[str], Tuple[Optional[float], Optional[str]]
] = _default_parser_function,
) -> None:
"""Init params."""
self._service_context = service_context or ServiceContext.from_defaults()
self._raise_error = raise_error
self._eval_template: BasePromptTemplate
if isinstance(eval_template, str):
self._eval_template = PromptTemplate(eval_template)
else:
self._eval_template = eval_template or DEFAULT_EVAL_TEMPLATE
self.parser_function = parser_function
self.score_threshold = score_threshold
def _get_prompts(self) -> PromptDictType:
"""Get prompts."""
return {
"eval_template": self._eval_template,
"refine_template": self._refine_template,
}
def _update_prompts(self, prompts: PromptDictType) -> None:
"""Update prompts."""
if "eval_template" in prompts:
self._eval_template = prompts["eval_template"]
if "refine_template" in prompts:
self._refine_template = prompts["refine_template"]
async def aevaluate(
self,
query: str | None = None,
response: str | None = None,
contexts: Sequence[str] | None = None,
sleep_time_in_seconds: int = 0,
**kwargs: Any,
) -> EvaluationResult:
"""Evaluate whether the response is relevant to the query."""
del kwargs # Unused
del contexts # Unused
if query is None or response is None:
raise ValueError("query and response must be provided")
await asyncio.sleep(sleep_time_in_seconds)
eval_response = await self._service_context.llm.apredict(
prompt=self._eval_template,
query=query,
response=response,
)
score, reasoning = self.parser_function(eval_response)
invalid_result, invalid_reason = False, None
if score is None and reasoning is None:
if self._raise_error:
raise ValueError("The response is invalid")
invalid_result = True
invalid_reason = "Unable to parse the output string."
if score:
score /= self.score_threshold
return EvaluationResult(
query=query,
response=response,
score=score,
feedback=eval_response,
invalid_result=invalid_result,
invalid_reason=invalid_reason,
)