faiss_rag_enterprise/llama_index/readers/pinecone.py

55 lines
1.8 KiB
Python

"""Pinecone reader."""
from typing import Any, Dict, List, Optional
from llama_index.readers.base import BaseReader
from llama_index.schema import Document
class PineconeReader(BaseReader):
"""Pinecone reader.
Args:
api_key (str): Pinecone API key.
environment (str): Pinecone environment.
"""
def __init__(self, api_key: str, environment: Optional[str] = None) -> None:
"""Initialize with parameters."""
raise NotImplementedError(
"PineconeReader has been deprecated. Please use `PineconeVectorStore` instead."
)
def load_data(
self,
index_name: str,
id_to_text_map: Dict[str, str],
vector: Optional[List[float]],
top_k: int,
separate_documents: bool = True,
include_values: bool = True,
**query_kwargs: Any
) -> List[Document]:
"""Load data from Pinecone.
Args:
index_name (str): Name of the index.
id_to_text_map (Dict[str, str]): A map from ID's to text.
separate_documents (Optional[bool]): Whether to return separate
documents per retrieved entry. Defaults to True.
vector (List[float]): Query vector.
top_k (int): Number of results to return.
include_values (bool): Whether to include the embedding in the response.
Defaults to True.
**query_kwargs: Keyword arguments to pass to the query.
Arguments are the exact same as those found in
Pinecone's reference documentation for the
query method.
Returns:
List[Document]: A list of documents.
"""
raise NotImplementedError(
"PineconeReader has been deprecated. Please use `PineconeVectorStore` instead."
)