105 lines
4.0 KiB
Python
105 lines
4.0 KiB
Python
import os
|
||
from typing import List
|
||
import asyncio
|
||
import faiss
|
||
from sentence_transformers import SentenceTransformer
|
||
|
||
from llama_index import (
|
||
SimpleDirectoryReader,
|
||
VectorStoreIndex,
|
||
PromptHelper,
|
||
PromptTemplate,
|
||
ServiceContext,
|
||
)
|
||
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
||
from llama_index.vector_stores.faiss import FaissVectorStore
|
||
from app.core.config import settings
|
||
from scripts.permissions import get_user_allowed_indexes
|
||
|
||
USER_INDEX_PATH = "index_data"
|
||
USER_DOC_PATH = "docs"
|
||
|
||
# ✅ 替代 CustomEmbedding,用于 bge-m3 模型,自动加前缀
|
||
class BGEEmbedding(HuggingFaceEmbedding):
|
||
def _get_query_embedding(self, query: str) -> List[float]:
|
||
prefix = "Represent this sentence for searching relevant passages: "
|
||
return super()._get_query_embedding(prefix + query)
|
||
|
||
def _get_query_embeddings(self, queries: List[str]) -> List[List[float]]:
|
||
prefix = "Represent this sentence for searching relevant passages: "
|
||
return super()._get_query_embeddings([prefix + q for q in queries])
|
||
|
||
def build_user_index(user_id: str):
|
||
doc_dir = os.path.join(USER_DOC_PATH, user_id)
|
||
if not os.path.exists(doc_dir):
|
||
raise FileNotFoundError(f"文档目录不存在: {doc_dir}")
|
||
|
||
documents = SimpleDirectoryReader(doc_dir).load_data()
|
||
embed_model = BGEEmbedding(model_name=settings.MODEL_NAME)
|
||
|
||
service_context = ServiceContext.from_defaults(embed_model=embed_model, llm=None)
|
||
|
||
# ✅ 指定正确维度:bge-m3 是 1024
|
||
faiss_index = faiss.IndexFlatL2(1024)
|
||
vector_store = FaissVectorStore(faiss_index=faiss_index)
|
||
|
||
index = VectorStoreIndex.from_documents(
|
||
documents,
|
||
vector_store=vector_store,
|
||
service_context=service_context
|
||
)
|
||
|
||
index_path = os.path.join(USER_INDEX_PATH, f"{user_id}.index")
|
||
faiss.write_index(index.vector_store.index, index_path)
|
||
print(f"[BUILD] 为用户 {user_id} 构建并保存了索引 → {index_path}")
|
||
|
||
def query_user_rag(user_id: str, question: str, top_k: int = 4) -> str:
|
||
embed_model = BGEEmbedding(model_name=settings.MODEL_NAME)
|
||
service_context = ServiceContext.from_defaults(embed_model=embed_model, llm=None)
|
||
|
||
all_nodes = []
|
||
|
||
# 加载用户主索引
|
||
index_path = os.path.join(USER_INDEX_PATH, f"{user_id}.index")
|
||
if not os.path.exists(index_path):
|
||
raise FileNotFoundError(f"[ERROR] 用户 {user_id} 的索引不存在")
|
||
user_store = FaissVectorStore.from_persist_path(index_path)
|
||
user_index = VectorStoreIndex.from_vector_store(user_store, service_context=service_context)
|
||
all_nodes += user_index.as_retriever(similarity_top_k=top_k).retrieve(question)
|
||
|
||
# 加载共享索引
|
||
shared_indexes = get_user_allowed_indexes(user_id)
|
||
if shared_indexes:
|
||
for shared_name in shared_indexes:
|
||
shared_path = os.path.join(USER_INDEX_PATH, shared_name)
|
||
if os.path.exists(shared_path) and shared_path != index_path:
|
||
shared_store = FaissVectorStore.from_persist_path(shared_path)
|
||
shared_index = VectorStoreIndex.from_vector_store(shared_store, service_context=service_context)
|
||
all_nodes += shared_index.as_retriever(similarity_top_k=top_k).retrieve(question)
|
||
else:
|
||
print(f"[INFO] 用户 {user_id} 没有共享索引权限")
|
||
|
||
# 合并 + 按 score 排序
|
||
sorted_nodes = sorted(all_nodes, key=lambda n: -(n.score or 0))
|
||
top_nodes = sorted_nodes[:top_k]
|
||
|
||
context_str = "\n\n".join([n.get_text() for n in top_nodes])
|
||
prompt_template = PromptTemplate(
|
||
"请根据以下内容回答用户问题:\n\n{context}\n\n问题:{query}"
|
||
)
|
||
final_prompt = prompt_template.format(
|
||
context=context_str,
|
||
query=question,
|
||
)
|
||
|
||
print("[PROMPT构建完成]")
|
||
return final_prompt
|
||
|
||
# 示例:
|
||
if __name__ == "__main__":
|
||
uid = "user_001"
|
||
build_user_index(uid)
|
||
prompt = query_user_rag(uid, "这份资料中提到了哪些关键点?")
|
||
print("\n------ 最终构建的 Prompt 给 LLM 使用 ------\n")
|
||
print(prompt)
|