faiss_rag_enterprise/llama_index/embeddings/gemini.py

107 lines
3.5 KiB
Python

"""Gemini embeddings file."""
from typing import Any, List, Optional
from llama_index.bridge.pydantic import Field, PrivateAttr
from llama_index.callbacks.base import CallbackManager
from llama_index.core.embeddings.base import DEFAULT_EMBED_BATCH_SIZE, BaseEmbedding
class GeminiEmbedding(BaseEmbedding):
"""Google Gemini embeddings.
Args:
model_name (str): Model for embedding.
Defaults to "models/embedding-001".
api_key (Optional[str]): API key to access the model. Defaults to None.
"""
_model: Any = PrivateAttr()
title: Optional[str] = Field(
default="",
description="Title is only applicable for retrieval_document tasks, and is used to represent a document title. For other tasks, title is invalid.",
)
task_type: Optional[str] = Field(
default="retrieval_document",
description="The task for embedding model.",
)
def __init__(
self,
model_name: str = "models/embedding-001",
task_type: Optional[str] = "retrieval_document",
api_key: Optional[str] = None,
title: Optional[str] = None,
embed_batch_size: int = DEFAULT_EMBED_BATCH_SIZE,
callback_manager: Optional[CallbackManager] = None,
**kwargs: Any,
):
try:
import google.generativeai as gemini
except ImportError:
raise ImportError(
"google-generativeai package not found, install with"
"'pip install google-generativeai'"
)
gemini.configure(api_key=api_key)
self._model = gemini
super().__init__(
model_name=model_name,
embed_batch_size=embed_batch_size,
callback_manager=callback_manager,
**kwargs,
)
self.title = title
self.task_type = task_type
@classmethod
def class_name(cls) -> str:
return "GeminiEmbedding"
def _get_query_embedding(self, query: str) -> List[float]:
"""Get query embedding."""
return self._model.embed_content(
model=self.model_name,
content=query,
title=self.title,
task_type=self.task_type,
)["embedding"]
def _get_text_embedding(self, text: str) -> List[float]:
"""Get text embedding."""
return self._model.embed_content(
model=self.model_name,
content=text,
title=self.title,
task_type=self.task_type,
)["embedding"]
def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]:
"""Get text embeddings."""
return [
self._model.embed_content(
model=self.model_name,
content=text,
title=self.title,
task_type=self.task_type,
)["embedding"]
for text in texts
]
### Async methods ###
# need to wait async calls from Gemini side to be implemented.
# Issue: https://github.com/google/generative-ai-python/issues/125
async def _aget_query_embedding(self, query: str) -> List[float]:
"""The asynchronous version of _get_query_embedding."""
return self._get_query_embedding(query)
async def _aget_text_embedding(self, text: str) -> List[float]:
"""Asynchronously get text embedding."""
return self._get_text_embedding(text)
async def _aget_text_embeddings(self, texts: List[str]) -> List[List[float]]:
"""Asynchronously get text embeddings."""
return self._get_text_embeddings(texts)