faiss_rag_enterprise/llama_index/embeddings/google.py

65 lines
2.0 KiB
Python

"""Google Universal Sentence Encoder Embedding Wrapper Module."""
from typing import Any, List, Optional
from llama_index.bridge.pydantic import PrivateAttr
from llama_index.callbacks import CallbackManager
from llama_index.core.embeddings.base import DEFAULT_EMBED_BATCH_SIZE, BaseEmbedding
# Google Universal Sentence Encode v5
DEFAULT_HANDLE = "https://tfhub.dev/google/universal-sentence-encoder-large/5"
class GoogleUnivSentEncoderEmbedding(BaseEmbedding):
_model: Any = PrivateAttr()
def __init__(
self,
handle: Optional[str] = None,
embed_batch_size: int = DEFAULT_EMBED_BATCH_SIZE,
callback_manager: Optional[CallbackManager] = None,
):
"""Init params."""
handle = handle or DEFAULT_HANDLE
try:
import tensorflow_hub as hub
model = hub.load(handle)
except ImportError:
raise ImportError(
"Please install tensorflow_hub: `pip install tensorflow_hub`"
)
self._model = model
super().__init__(
embed_batch_size=embed_batch_size,
callback_manager=callback_manager,
model_name=handle,
)
@classmethod
def class_name(cls) -> str:
return "GoogleUnivSentEncoderEmbedding"
def _get_query_embedding(self, query: str) -> List[float]:
"""Get query embedding."""
return self._get_embedding(query)
# TODO: use proper async methods
async def _aget_text_embedding(self, query: str) -> List[float]:
"""Get text embedding."""
return self._get_embedding(query)
# TODO: user proper async methods
async def _aget_query_embedding(self, query: str) -> List[float]:
"""Get query embedding."""
return self._get_embedding(query)
def _get_text_embedding(self, text: str) -> List[float]:
"""Get text embedding."""
return self._get_embedding(text)
def _get_embedding(self, text: str) -> List[float]:
vectors = self._model([text]).numpy().tolist()
return vectors[0]