faiss_rag_enterprise/llama_index/embeddings/openai.py

429 lines
14 KiB
Python

"""OpenAI embeddings file."""
from enum import Enum
from typing import Any, Dict, List, Optional, Tuple
import httpx
from openai import AsyncOpenAI, OpenAI
from llama_index.bridge.pydantic import Field, PrivateAttr
from llama_index.callbacks.base import CallbackManager
from llama_index.embeddings.base import BaseEmbedding
from llama_index.llms.openai_utils import (
create_retry_decorator,
resolve_openai_credentials,
)
embedding_retry_decorator = create_retry_decorator(
max_retries=6,
random_exponential=True,
stop_after_delay_seconds=60,
min_seconds=1,
max_seconds=20,
)
class OpenAIEmbeddingMode(str, Enum):
"""OpenAI embedding mode."""
SIMILARITY_MODE = "similarity"
TEXT_SEARCH_MODE = "text_search"
class OpenAIEmbeddingModelType(str, Enum):
"""OpenAI embedding model type."""
DAVINCI = "davinci"
CURIE = "curie"
BABBAGE = "babbage"
ADA = "ada"
TEXT_EMBED_ADA_002 = "text-embedding-ada-002"
TEXT_EMBED_3_LARGE = "text-embedding-3-large"
TEXT_EMBED_3_SMALL = "text-embedding-3-small"
class OpenAIEmbeddingModeModel(str, Enum):
"""OpenAI embedding mode model."""
# davinci
TEXT_SIMILARITY_DAVINCI = "text-similarity-davinci-001"
TEXT_SEARCH_DAVINCI_QUERY = "text-search-davinci-query-001"
TEXT_SEARCH_DAVINCI_DOC = "text-search-davinci-doc-001"
# curie
TEXT_SIMILARITY_CURIE = "text-similarity-curie-001"
TEXT_SEARCH_CURIE_QUERY = "text-search-curie-query-001"
TEXT_SEARCH_CURIE_DOC = "text-search-curie-doc-001"
# babbage
TEXT_SIMILARITY_BABBAGE = "text-similarity-babbage-001"
TEXT_SEARCH_BABBAGE_QUERY = "text-search-babbage-query-001"
TEXT_SEARCH_BABBAGE_DOC = "text-search-babbage-doc-001"
# ada
TEXT_SIMILARITY_ADA = "text-similarity-ada-001"
TEXT_SEARCH_ADA_QUERY = "text-search-ada-query-001"
TEXT_SEARCH_ADA_DOC = "text-search-ada-doc-001"
# text-embedding-ada-002
TEXT_EMBED_ADA_002 = "text-embedding-ada-002"
# text-embedding-3-large
TEXT_EMBED_3_LARGE = "text-embedding-3-large"
# text-embedding-3-small
TEXT_EMBED_3_SMALL = "text-embedding-3-small"
# convenient shorthand
OAEM = OpenAIEmbeddingMode
OAEMT = OpenAIEmbeddingModelType
OAEMM = OpenAIEmbeddingModeModel
EMBED_MAX_TOKEN_LIMIT = 2048
_QUERY_MODE_MODEL_DICT = {
(OAEM.SIMILARITY_MODE, "davinci"): OAEMM.TEXT_SIMILARITY_DAVINCI,
(OAEM.SIMILARITY_MODE, "curie"): OAEMM.TEXT_SIMILARITY_CURIE,
(OAEM.SIMILARITY_MODE, "babbage"): OAEMM.TEXT_SIMILARITY_BABBAGE,
(OAEM.SIMILARITY_MODE, "ada"): OAEMM.TEXT_SIMILARITY_ADA,
(OAEM.SIMILARITY_MODE, "text-embedding-ada-002"): OAEMM.TEXT_EMBED_ADA_002,
(OAEM.SIMILARITY_MODE, "text-embedding-3-small"): OAEMM.TEXT_EMBED_3_SMALL,
(OAEM.SIMILARITY_MODE, "text-embedding-3-large"): OAEMM.TEXT_EMBED_3_LARGE,
(OAEM.TEXT_SEARCH_MODE, "davinci"): OAEMM.TEXT_SEARCH_DAVINCI_QUERY,
(OAEM.TEXT_SEARCH_MODE, "curie"): OAEMM.TEXT_SEARCH_CURIE_QUERY,
(OAEM.TEXT_SEARCH_MODE, "babbage"): OAEMM.TEXT_SEARCH_BABBAGE_QUERY,
(OAEM.TEXT_SEARCH_MODE, "ada"): OAEMM.TEXT_SEARCH_ADA_QUERY,
(OAEM.TEXT_SEARCH_MODE, "text-embedding-ada-002"): OAEMM.TEXT_EMBED_ADA_002,
(OAEM.TEXT_SEARCH_MODE, "text-embedding-3-large"): OAEMM.TEXT_EMBED_3_LARGE,
(OAEM.TEXT_SEARCH_MODE, "text-embedding-3-small"): OAEMM.TEXT_EMBED_3_SMALL,
}
_TEXT_MODE_MODEL_DICT = {
(OAEM.SIMILARITY_MODE, "davinci"): OAEMM.TEXT_SIMILARITY_DAVINCI,
(OAEM.SIMILARITY_MODE, "curie"): OAEMM.TEXT_SIMILARITY_CURIE,
(OAEM.SIMILARITY_MODE, "babbage"): OAEMM.TEXT_SIMILARITY_BABBAGE,
(OAEM.SIMILARITY_MODE, "ada"): OAEMM.TEXT_SIMILARITY_ADA,
(OAEM.SIMILARITY_MODE, "text-embedding-ada-002"): OAEMM.TEXT_EMBED_ADA_002,
(OAEM.SIMILARITY_MODE, "text-embedding-3-small"): OAEMM.TEXT_EMBED_3_SMALL,
(OAEM.SIMILARITY_MODE, "text-embedding-3-large"): OAEMM.TEXT_EMBED_3_LARGE,
(OAEM.TEXT_SEARCH_MODE, "davinci"): OAEMM.TEXT_SEARCH_DAVINCI_DOC,
(OAEM.TEXT_SEARCH_MODE, "curie"): OAEMM.TEXT_SEARCH_CURIE_DOC,
(OAEM.TEXT_SEARCH_MODE, "babbage"): OAEMM.TEXT_SEARCH_BABBAGE_DOC,
(OAEM.TEXT_SEARCH_MODE, "ada"): OAEMM.TEXT_SEARCH_ADA_DOC,
(OAEM.TEXT_SEARCH_MODE, "text-embedding-ada-002"): OAEMM.TEXT_EMBED_ADA_002,
(OAEM.TEXT_SEARCH_MODE, "text-embedding-3-large"): OAEMM.TEXT_EMBED_3_LARGE,
(OAEM.TEXT_SEARCH_MODE, "text-embedding-3-small"): OAEMM.TEXT_EMBED_3_SMALL,
}
@embedding_retry_decorator
def get_embedding(client: OpenAI, text: str, engine: str, **kwargs: Any) -> List[float]:
"""Get embedding.
NOTE: Copied from OpenAI's embedding utils:
https://github.com/openai/openai-python/blob/main/openai/embeddings_utils.py
Copied here to avoid importing unnecessary dependencies
like matplotlib, plotly, scipy, sklearn.
"""
text = text.replace("\n", " ")
return (
client.embeddings.create(input=[text], model=engine, **kwargs).data[0].embedding
)
@embedding_retry_decorator
async def aget_embedding(
aclient: AsyncOpenAI, text: str, engine: str, **kwargs: Any
) -> List[float]:
"""Asynchronously get embedding.
NOTE: Copied from OpenAI's embedding utils:
https://github.com/openai/openai-python/blob/main/openai/embeddings_utils.py
Copied here to avoid importing unnecessary dependencies
like matplotlib, plotly, scipy, sklearn.
"""
text = text.replace("\n", " ")
return (
(await aclient.embeddings.create(input=[text], model=engine, **kwargs))
.data[0]
.embedding
)
@embedding_retry_decorator
def get_embeddings(
client: OpenAI, list_of_text: List[str], engine: str, **kwargs: Any
) -> List[List[float]]:
"""Get embeddings.
NOTE: Copied from OpenAI's embedding utils:
https://github.com/openai/openai-python/blob/main/openai/embeddings_utils.py
Copied here to avoid importing unnecessary dependencies
like matplotlib, plotly, scipy, sklearn.
"""
assert len(list_of_text) <= 2048, "The batch size should not be larger than 2048."
list_of_text = [text.replace("\n", " ") for text in list_of_text]
data = client.embeddings.create(input=list_of_text, model=engine, **kwargs).data
return [d.embedding for d in data]
@embedding_retry_decorator
async def aget_embeddings(
aclient: AsyncOpenAI,
list_of_text: List[str],
engine: str,
**kwargs: Any,
) -> List[List[float]]:
"""Asynchronously get embeddings.
NOTE: Copied from OpenAI's embedding utils:
https://github.com/openai/openai-python/blob/main/openai/embeddings_utils.py
Copied here to avoid importing unnecessary dependencies
like matplotlib, plotly, scipy, sklearn.
"""
assert len(list_of_text) <= 2048, "The batch size should not be larger than 2048."
list_of_text = [text.replace("\n", " ") for text in list_of_text]
data = (
await aclient.embeddings.create(input=list_of_text, model=engine, **kwargs)
).data
return [d.embedding for d in data]
def get_engine(
mode: str,
model: str,
mode_model_dict: Dict[Tuple[OpenAIEmbeddingMode, str], OpenAIEmbeddingModeModel],
) -> OpenAIEmbeddingModeModel:
"""Get engine."""
key = (OpenAIEmbeddingMode(mode), OpenAIEmbeddingModelType(model))
if key not in mode_model_dict:
raise ValueError(f"Invalid mode, model combination: {key}")
return mode_model_dict[key]
class OpenAIEmbedding(BaseEmbedding):
"""OpenAI class for embeddings.
Args:
mode (str): Mode for embedding.
Defaults to OpenAIEmbeddingMode.TEXT_SEARCH_MODE.
Options are:
- OpenAIEmbeddingMode.SIMILARITY_MODE
- OpenAIEmbeddingMode.TEXT_SEARCH_MODE
model (str): Model for embedding.
Defaults to OpenAIEmbeddingModelType.TEXT_EMBED_ADA_002.
Options are:
- OpenAIEmbeddingModelType.DAVINCI
- OpenAIEmbeddingModelType.CURIE
- OpenAIEmbeddingModelType.BABBAGE
- OpenAIEmbeddingModelType.ADA
- OpenAIEmbeddingModelType.TEXT_EMBED_ADA_002
"""
additional_kwargs: Dict[str, Any] = Field(
default_factory=dict, description="Additional kwargs for the OpenAI API."
)
api_key: str = Field(description="The OpenAI API key.")
api_base: str = Field(description="The base URL for OpenAI API.")
api_version: str = Field(description="The version for OpenAI API.")
max_retries: int = Field(
default=10, description="Maximum number of retries.", gte=0
)
timeout: float = Field(default=60.0, description="Timeout for each request.", gte=0)
default_headers: Optional[Dict[str, str]] = Field(
default=None, description="The default headers for API requests."
)
reuse_client: bool = Field(
default=True,
description=(
"Reuse the OpenAI client between requests. When doing anything with large "
"volumes of async API calls, setting this to false can improve stability."
),
)
dimensions: Optional[int] = Field(
default=None,
description=(
"The number of dimensions on the output embedding vectors. "
"Works only with v3 embedding models."
),
)
_query_engine: OpenAIEmbeddingModeModel = PrivateAttr()
_text_engine: OpenAIEmbeddingModeModel = PrivateAttr()
_client: Optional[OpenAI] = PrivateAttr()
_aclient: Optional[AsyncOpenAI] = PrivateAttr()
_http_client: Optional[httpx.Client] = PrivateAttr()
def __init__(
self,
mode: str = OpenAIEmbeddingMode.TEXT_SEARCH_MODE,
model: str = OpenAIEmbeddingModelType.TEXT_EMBED_ADA_002,
embed_batch_size: int = 100,
dimensions: Optional[int] = None,
additional_kwargs: Optional[Dict[str, Any]] = None,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
api_version: Optional[str] = None,
max_retries: int = 10,
timeout: float = 60.0,
reuse_client: bool = True,
callback_manager: Optional[CallbackManager] = None,
default_headers: Optional[Dict[str, str]] = None,
http_client: Optional[httpx.Client] = None,
**kwargs: Any,
) -> None:
additional_kwargs = additional_kwargs or {}
if dimensions is not None:
additional_kwargs["dimensions"] = dimensions
api_key, api_base, api_version = resolve_openai_credentials(
api_key=api_key,
api_base=api_base,
api_version=api_version,
)
self._query_engine = get_engine(mode, model, _QUERY_MODE_MODEL_DICT)
self._text_engine = get_engine(mode, model, _TEXT_MODE_MODEL_DICT)
if "model_name" in kwargs:
model_name = kwargs.pop("model_name")
self._query_engine = self._text_engine = model_name
else:
model_name = model
super().__init__(
embed_batch_size=embed_batch_size,
dimensions=dimensions,
callback_manager=callback_manager,
model_name=model_name,
additional_kwargs=additional_kwargs,
api_key=api_key,
api_base=api_base,
api_version=api_version,
max_retries=max_retries,
reuse_client=reuse_client,
timeout=timeout,
default_headers=default_headers,
**kwargs,
)
self._client = None
self._aclient = None
self._http_client = http_client
def _get_client(self) -> OpenAI:
if not self.reuse_client:
return OpenAI(**self._get_credential_kwargs())
if self._client is None:
self._client = OpenAI(**self._get_credential_kwargs())
return self._client
def _get_aclient(self) -> AsyncOpenAI:
if not self.reuse_client:
return AsyncOpenAI(**self._get_credential_kwargs())
if self._aclient is None:
self._aclient = AsyncOpenAI(**self._get_credential_kwargs())
return self._aclient
@classmethod
def class_name(cls) -> str:
return "OpenAIEmbedding"
def _get_credential_kwargs(self) -> Dict[str, Any]:
return {
"api_key": self.api_key,
"base_url": self.api_base,
"max_retries": self.max_retries,
"timeout": self.timeout,
"default_headers": self.default_headers,
"http_client": self._http_client,
}
def _get_query_embedding(self, query: str) -> List[float]:
"""Get query embedding."""
client = self._get_client()
return get_embedding(
client,
query,
engine=self._query_engine,
**self.additional_kwargs,
)
async def _aget_query_embedding(self, query: str) -> List[float]:
"""The asynchronous version of _get_query_embedding."""
aclient = self._get_aclient()
return await aget_embedding(
aclient,
query,
engine=self._query_engine,
**self.additional_kwargs,
)
def _get_text_embedding(self, text: str) -> List[float]:
"""Get text embedding."""
client = self._get_client()
return get_embedding(
client,
text,
engine=self._text_engine,
**self.additional_kwargs,
)
async def _aget_text_embedding(self, text: str) -> List[float]:
"""Asynchronously get text embedding."""
aclient = self._get_aclient()
return await aget_embedding(
aclient,
text,
engine=self._text_engine,
**self.additional_kwargs,
)
def _get_text_embeddings(self, texts: List[str]) -> List[List[float]]:
"""Get text embeddings.
By default, this is a wrapper around _get_text_embedding.
Can be overridden for batch queries.
"""
client = self._get_client()
return get_embeddings(
client,
texts,
engine=self._text_engine,
**self.additional_kwargs,
)
async def _aget_text_embeddings(self, texts: List[str]) -> List[List[float]]:
"""Asynchronously get text embeddings."""
aclient = self._get_aclient()
return await aget_embeddings(
aclient,
texts,
engine=self._text_engine,
**self.additional_kwargs,
)