faiss_rag_enterprise/llama_index/embeddings/sagemaker_embedding_endpoin...

154 lines
5.7 KiB
Python

from typing import Any, Dict, List, Optional
from llama_index.bridge.pydantic import Field, PrivateAttr
from llama_index.callbacks.base import CallbackManager
from llama_index.constants import DEFAULT_EMBED_BATCH_SIZE
from llama_index.core.embeddings.base import BaseEmbedding, Embedding
from llama_index.embeddings.sagemaker_embedding_endpoint_utils import (
BaseIOHandler,
IOHandler,
)
from llama_index.types import PydanticProgramMode
from llama_index.utilities.aws_utils import get_aws_service_client
DEFAULT_IO_HANDLER = IOHandler()
class SageMakerEmbedding(BaseEmbedding):
endpoint_name: str = Field(description="SageMaker Embedding endpoint name")
endpoint_kwargs: Dict[str, Any] = Field(
default={},
description="Additional kwargs for the invoke_endpoint request.",
)
model_kwargs: Dict[str, Any] = Field(
default={},
description="kwargs to pass to the model.",
)
content_handler: BaseIOHandler = Field(
default=DEFAULT_IO_HANDLER,
description="used to serialize input, deserialize output, and remove a prefix.",
)
profile_name: Optional[str] = Field(
description="The name of aws profile to use. If not given, then the default profile is used."
)
aws_access_key_id: Optional[str] = Field(description="AWS Access Key ID to use")
aws_secret_access_key: Optional[str] = Field(
description="AWS Secret Access Key to use"
)
aws_session_token: Optional[str] = Field(description="AWS Session Token to use")
aws_region_name: Optional[str] = Field(
description="AWS region name to use. Uses region configured in AWS CLI if not passed"
)
max_retries: Optional[int] = Field(
default=3,
description="The maximum number of API retries.",
gte=0,
)
timeout: Optional[float] = Field(
default=60.0,
description="The timeout, in seconds, for API requests.",
gte=0,
)
_client: Any = PrivateAttr()
_verbose: bool = PrivateAttr()
def __init__(
self,
endpoint_name: str,
endpoint_kwargs: Optional[Dict[str, Any]] = {},
model_kwargs: Optional[Dict[str, Any]] = {},
content_handler: BaseIOHandler = DEFAULT_IO_HANDLER,
profile_name: Optional[str] = None,
aws_access_key_id: Optional[str] = None,
aws_secret_access_key: Optional[str] = None,
aws_session_token: Optional[str] = None,
region_name: Optional[str] = None,
max_retries: Optional[int] = 3,
timeout: Optional[float] = 60.0,
embed_batch_size: int = DEFAULT_EMBED_BATCH_SIZE,
callback_manager: Optional[CallbackManager] = None,
pydantic_program_mode: PydanticProgramMode = PydanticProgramMode.DEFAULT,
verbose: bool = False,
):
if not endpoint_name:
raise ValueError(
"Missing required argument:`endpoint_name`"
" Please specify the endpoint_name"
)
endpoint_kwargs = endpoint_kwargs or {}
model_kwargs = model_kwargs or {}
content_handler = content_handler
self._client = get_aws_service_client(
service_name="sagemaker-runtime",
profile_name=profile_name,
region_name=region_name,
aws_access_key_id=aws_access_key_id,
aws_secret_access_key=aws_secret_access_key,
aws_session_token=aws_session_token,
max_retries=max_retries,
timeout=timeout,
)
self._verbose = verbose
super().__init__(
endpoint_name=endpoint_name,
endpoint_kwargs=endpoint_kwargs,
model_kwargs=model_kwargs,
content_handler=content_handler,
embed_batch_size=embed_batch_size,
pydantic_program_mode=pydantic_program_mode,
callback_manager=callback_manager,
)
@classmethod
def class_name(self) -> str:
return "SageMakerEmbedding"
def _get_embedding(self, payload: List[str], **kwargs: Any) -> List[Embedding]:
model_kwargs = {**self.model_kwargs, **kwargs}
request_body = self.content_handler.serialize_input(
request=payload, model_kwargs=model_kwargs
)
response = self._client.invoke_endpoint(
EndpointName=self.endpoint_name,
Body=request_body,
ContentType=self.content_handler.content_type,
Accept=self.content_handler.accept,
**self.endpoint_kwargs,
)["Body"]
return self.content_handler.deserialize_output(response=response)
def _get_query_embedding(self, query: str, **kwargs: Any) -> Embedding:
query = query.replace("\n", " ")
return self._get_embedding([query], **kwargs)[0]
def _get_text_embedding(self, text: str, **kwargs: Any) -> Embedding:
text = text.replace("\n", " ")
return self._get_embedding([text], **kwargs)[0]
def _get_text_embeddings(self, texts: List[str], **kwargs: Any) -> List[Embedding]:
"""
Embed the input sequence of text synchronously.
Subclasses can implement this method if batch queries are supported.
"""
texts = [text.replace("\n", " ") for text in texts]
# Default implementation just loops over _get_text_embedding
return self._get_embedding(texts, **kwargs)
async def _aget_query_embedding(self, query: str, **kwargs: Any) -> Embedding:
raise NotImplementedError
async def _aget_text_embedding(self, text: str, **kwargs: Any) -> Embedding:
raise NotImplementedError
async def _aget_text_embeddings(
self, texts: List[str], **kwargs: Any
) -> List[Embedding]:
raise NotImplementedError