154 lines
5.7 KiB
Python
154 lines
5.7 KiB
Python
from typing import Any, Dict, List, Optional
|
|
|
|
from llama_index.bridge.pydantic import Field, PrivateAttr
|
|
from llama_index.callbacks.base import CallbackManager
|
|
from llama_index.constants import DEFAULT_EMBED_BATCH_SIZE
|
|
from llama_index.core.embeddings.base import BaseEmbedding, Embedding
|
|
from llama_index.embeddings.sagemaker_embedding_endpoint_utils import (
|
|
BaseIOHandler,
|
|
IOHandler,
|
|
)
|
|
from llama_index.types import PydanticProgramMode
|
|
from llama_index.utilities.aws_utils import get_aws_service_client
|
|
|
|
DEFAULT_IO_HANDLER = IOHandler()
|
|
|
|
|
|
class SageMakerEmbedding(BaseEmbedding):
|
|
endpoint_name: str = Field(description="SageMaker Embedding endpoint name")
|
|
endpoint_kwargs: Dict[str, Any] = Field(
|
|
default={},
|
|
description="Additional kwargs for the invoke_endpoint request.",
|
|
)
|
|
model_kwargs: Dict[str, Any] = Field(
|
|
default={},
|
|
description="kwargs to pass to the model.",
|
|
)
|
|
content_handler: BaseIOHandler = Field(
|
|
default=DEFAULT_IO_HANDLER,
|
|
description="used to serialize input, deserialize output, and remove a prefix.",
|
|
)
|
|
|
|
profile_name: Optional[str] = Field(
|
|
description="The name of aws profile to use. If not given, then the default profile is used."
|
|
)
|
|
aws_access_key_id: Optional[str] = Field(description="AWS Access Key ID to use")
|
|
aws_secret_access_key: Optional[str] = Field(
|
|
description="AWS Secret Access Key to use"
|
|
)
|
|
aws_session_token: Optional[str] = Field(description="AWS Session Token to use")
|
|
aws_region_name: Optional[str] = Field(
|
|
description="AWS region name to use. Uses region configured in AWS CLI if not passed"
|
|
)
|
|
max_retries: Optional[int] = Field(
|
|
default=3,
|
|
description="The maximum number of API retries.",
|
|
gte=0,
|
|
)
|
|
timeout: Optional[float] = Field(
|
|
default=60.0,
|
|
description="The timeout, in seconds, for API requests.",
|
|
gte=0,
|
|
)
|
|
_client: Any = PrivateAttr()
|
|
_verbose: bool = PrivateAttr()
|
|
|
|
def __init__(
|
|
self,
|
|
endpoint_name: str,
|
|
endpoint_kwargs: Optional[Dict[str, Any]] = {},
|
|
model_kwargs: Optional[Dict[str, Any]] = {},
|
|
content_handler: BaseIOHandler = DEFAULT_IO_HANDLER,
|
|
profile_name: Optional[str] = None,
|
|
aws_access_key_id: Optional[str] = None,
|
|
aws_secret_access_key: Optional[str] = None,
|
|
aws_session_token: Optional[str] = None,
|
|
region_name: Optional[str] = None,
|
|
max_retries: Optional[int] = 3,
|
|
timeout: Optional[float] = 60.0,
|
|
embed_batch_size: int = DEFAULT_EMBED_BATCH_SIZE,
|
|
callback_manager: Optional[CallbackManager] = None,
|
|
pydantic_program_mode: PydanticProgramMode = PydanticProgramMode.DEFAULT,
|
|
verbose: bool = False,
|
|
):
|
|
if not endpoint_name:
|
|
raise ValueError(
|
|
"Missing required argument:`endpoint_name`"
|
|
" Please specify the endpoint_name"
|
|
)
|
|
endpoint_kwargs = endpoint_kwargs or {}
|
|
model_kwargs = model_kwargs or {}
|
|
content_handler = content_handler
|
|
self._client = get_aws_service_client(
|
|
service_name="sagemaker-runtime",
|
|
profile_name=profile_name,
|
|
region_name=region_name,
|
|
aws_access_key_id=aws_access_key_id,
|
|
aws_secret_access_key=aws_secret_access_key,
|
|
aws_session_token=aws_session_token,
|
|
max_retries=max_retries,
|
|
timeout=timeout,
|
|
)
|
|
self._verbose = verbose
|
|
|
|
super().__init__(
|
|
endpoint_name=endpoint_name,
|
|
endpoint_kwargs=endpoint_kwargs,
|
|
model_kwargs=model_kwargs,
|
|
content_handler=content_handler,
|
|
embed_batch_size=embed_batch_size,
|
|
pydantic_program_mode=pydantic_program_mode,
|
|
callback_manager=callback_manager,
|
|
)
|
|
|
|
@classmethod
|
|
def class_name(self) -> str:
|
|
return "SageMakerEmbedding"
|
|
|
|
def _get_embedding(self, payload: List[str], **kwargs: Any) -> List[Embedding]:
|
|
model_kwargs = {**self.model_kwargs, **kwargs}
|
|
|
|
request_body = self.content_handler.serialize_input(
|
|
request=payload, model_kwargs=model_kwargs
|
|
)
|
|
|
|
response = self._client.invoke_endpoint(
|
|
EndpointName=self.endpoint_name,
|
|
Body=request_body,
|
|
ContentType=self.content_handler.content_type,
|
|
Accept=self.content_handler.accept,
|
|
**self.endpoint_kwargs,
|
|
)["Body"]
|
|
|
|
return self.content_handler.deserialize_output(response=response)
|
|
|
|
def _get_query_embedding(self, query: str, **kwargs: Any) -> Embedding:
|
|
query = query.replace("\n", " ")
|
|
return self._get_embedding([query], **kwargs)[0]
|
|
|
|
def _get_text_embedding(self, text: str, **kwargs: Any) -> Embedding:
|
|
text = text.replace("\n", " ")
|
|
return self._get_embedding([text], **kwargs)[0]
|
|
|
|
def _get_text_embeddings(self, texts: List[str], **kwargs: Any) -> List[Embedding]:
|
|
"""
|
|
Embed the input sequence of text synchronously.
|
|
|
|
Subclasses can implement this method if batch queries are supported.
|
|
"""
|
|
texts = [text.replace("\n", " ") for text in texts]
|
|
|
|
# Default implementation just loops over _get_text_embedding
|
|
return self._get_embedding(texts, **kwargs)
|
|
|
|
async def _aget_query_embedding(self, query: str, **kwargs: Any) -> Embedding:
|
|
raise NotImplementedError
|
|
|
|
async def _aget_text_embedding(self, text: str, **kwargs: Any) -> Embedding:
|
|
raise NotImplementedError
|
|
|
|
async def _aget_text_embeddings(
|
|
self, texts: List[str], **kwargs: Any
|
|
) -> List[Embedding]:
|
|
raise NotImplementedError
|