faiss_rag_enterprise/llama_index/evaluation/dataset_generation.py

323 lines
12 KiB
Python

"""Dataset generation from documents."""
from __future__ import annotations
import asyncio
import json
import re
import uuid
from typing import Coroutine, Dict, List, Tuple
from deprecated import deprecated
from llama_index import Document, ServiceContext, SummaryIndex
from llama_index.bridge.pydantic import BaseModel, Field
from llama_index.ingestion import run_transformations
from llama_index.postprocessor.node import KeywordNodePostprocessor
from llama_index.prompts.base import BasePromptTemplate, PromptTemplate
from llama_index.prompts.default_prompts import DEFAULT_TEXT_QA_PROMPT
from llama_index.prompts.mixin import PromptDictType, PromptMixin, PromptMixinType
from llama_index.schema import BaseNode, MetadataMode, NodeWithScore
DEFAULT_QUESTION_GENERATION_PROMPT = """\
Context information is below.
---------------------
{context_str}
---------------------
Given the context information and not prior knowledge.
generate only questions based on the below query.
{query_str}
"""
@deprecated(
"Deprecated in favor of `LabelledRagDataset` which should be used instead.",
action="always",
)
class QueryResponseDataset(BaseModel):
"""Query Response Dataset.
The response can be empty if the dataset is generated from documents.
Args:
queries (Dict[str, str]): Query id -> query.
responses (Dict[str, str]): Query id -> response.
"""
queries: Dict[str, str] = Field(
default_factory=dict, description="Query id -> query"
)
responses: Dict[str, str] = Field(
default_factory=dict, description="Query id -> response"
)
@classmethod
def from_qr_pairs(
cls,
qr_pairs: List[Tuple[str, str]],
) -> QueryResponseDataset:
"""Create from qr pairs."""
# define ids as simple integers
queries = {str(idx): query for idx, (query, _) in enumerate(qr_pairs)}
responses = {str(idx): response for idx, (_, response) in enumerate(qr_pairs)}
return cls(queries=queries, responses=responses)
@property
def qr_pairs(self) -> List[Tuple[str, str]]:
"""Get pairs."""
# if query_id not in response, throw error
for query_id in self.queries:
if query_id not in self.responses:
raise ValueError(f"Query id {query_id} not in responses")
return [
(self.queries[query_id], self.responses[query_id])
for query_id in self.queries
]
@property
def questions(self) -> List[str]:
"""Get questions."""
return list(self.queries.values())
def save_json(self, path: str) -> None:
"""Save json."""
with open(path, "w") as f:
json.dump(self.dict(), f, indent=4)
@classmethod
def from_json(cls, path: str) -> QueryResponseDataset:
"""Load json."""
with open(path) as f:
data = json.load(f)
return cls(**data)
@deprecated(
"Deprecated in favor of `RagDatasetGenerator` which should be used instead.",
action="always",
)
class DatasetGenerator(PromptMixin):
"""Generate dataset (question/ question-answer pairs) \
based on the given documents.
NOTE: this is a beta feature, subject to change!
Args:
nodes (List[Node]): List of nodes. (Optional)
service_context (ServiceContext): Service Context.
num_questions_per_chunk: number of question to be \
generated per chunk. Each document is chunked of size 512 words.
text_question_template: Question generation template.
question_gen_query: Question generation query.
"""
def __init__(
self,
nodes: List[BaseNode],
service_context: ServiceContext | None = None,
num_questions_per_chunk: int = 10,
text_question_template: BasePromptTemplate | None = None,
text_qa_template: BasePromptTemplate | None = None,
question_gen_query: str | None = None,
metadata_mode: MetadataMode = MetadataMode.NONE,
show_progress: bool = False,
) -> None:
"""Init params."""
if service_context is None:
service_context = service_context or ServiceContext.from_defaults(
chunk_size_limit=3000
)
self.service_context = service_context
self.text_question_template = text_question_template or PromptTemplate(
DEFAULT_QUESTION_GENERATION_PROMPT
)
self.text_qa_template = text_qa_template or DEFAULT_TEXT_QA_PROMPT
self.question_gen_query = (
question_gen_query
or f"You are a Teacher/Professor. Your task is to setup \
{num_questions_per_chunk} questions for an upcoming \
quiz/examination. The questions should be diverse in nature \
across the document. Restrict the questions to the \
context information provided."
)
self.nodes = nodes
self._metadata_mode = metadata_mode
self._show_progress = show_progress
@classmethod
def from_documents(
cls,
documents: List[Document],
service_context: ServiceContext | None = None,
num_questions_per_chunk: int = 10,
text_question_template: BasePromptTemplate | None = None,
text_qa_template: BasePromptTemplate | None = None,
question_gen_query: str | None = None,
required_keywords: List[str] | None = None,
exclude_keywords: List[str] | None = None,
show_progress: bool = False,
) -> DatasetGenerator:
"""Generate dataset from documents."""
if service_context is None:
service_context = service_context or ServiceContext.from_defaults(
chunk_size_limit=3000
)
nodes = run_transformations(
documents, service_context.transformations, show_progress=show_progress
)
# use node postprocessor to filter nodes
required_keywords = required_keywords or []
exclude_keywords = exclude_keywords or []
node_postprocessor = KeywordNodePostprocessor(
service_context=service_context,
required_keywords=required_keywords,
exclude_keywords=exclude_keywords,
)
node_with_scores = [NodeWithScore(node=node) for node in nodes]
node_with_scores = node_postprocessor.postprocess_nodes(node_with_scores)
nodes = [node_with_score.node for node_with_score in node_with_scores]
return cls(
nodes=nodes,
service_context=service_context,
num_questions_per_chunk=num_questions_per_chunk,
text_question_template=text_question_template,
text_qa_template=text_qa_template,
question_gen_query=question_gen_query,
show_progress=show_progress,
)
async def _agenerate_dataset(
self,
nodes: List[BaseNode],
num: int | None = None,
generate_response: bool = False,
) -> QueryResponseDataset:
"""Node question generator."""
query_tasks: List[Coroutine] = []
queries: Dict[str, str] = {}
responses_dict: Dict[str, str] = {}
if self._show_progress:
from tqdm.asyncio import tqdm_asyncio
async_module = tqdm_asyncio
else:
async_module = asyncio
summary_indices: List[SummaryIndex] = []
for node in nodes:
if num is not None and len(query_tasks) >= num:
break
index = SummaryIndex.from_documents(
[
Document(
text=node.get_content(metadata_mode=self._metadata_mode),
metadata=node.metadata,
)
],
service_context=self.service_context,
)
query_engine = index.as_query_engine(
service_context=self.service_context,
text_qa_template=self.text_question_template,
use_async=True,
)
task = query_engine.aquery(
self.question_gen_query,
)
query_tasks.append(task)
summary_indices.append(index)
responses = await async_module.gather(*query_tasks)
for idx, response in enumerate(responses):
result = str(response).strip().split("\n")
cleaned_questions = [
re.sub(r"^\d+[\).\s]", "", question).strip() for question in result
]
cleaned_questions = [
question for question in cleaned_questions if len(question) > 0
]
cur_queries = {
str(uuid.uuid4()): question for question in cleaned_questions
}
queries.update(cur_queries)
if generate_response:
index = summary_indices[idx]
qr_tasks = []
cur_query_items = list(cur_queries.items())
cur_query_keys = [query_id for query_id, _ in cur_query_items]
for query_id, query in cur_query_items:
qa_query_engine = index.as_query_engine(
service_context=self.service_context,
text_qa_template=self.text_qa_template,
)
qr_task = qa_query_engine.aquery(query)
qr_tasks.append(qr_task)
qr_responses = await async_module.gather(*qr_tasks)
for query_id, qa_response in zip(cur_query_keys, qr_responses):
responses_dict[query_id] = str(qa_response)
else:
pass
query_ids = list(queries.keys())
if num is not None:
query_ids = query_ids[:num]
# truncate queries, responses to the subset of query ids
queries = {query_id: queries[query_id] for query_id in query_ids}
if generate_response:
responses_dict = {
query_id: responses_dict[query_id] for query_id in query_ids
}
return QueryResponseDataset(queries=queries, responses=responses_dict)
async def agenerate_questions_from_nodes(self, num: int | None = None) -> List[str]:
"""Generates questions for each document."""
dataset = await self._agenerate_dataset(
self.nodes, num=num, generate_response=False
)
return dataset.questions
async def agenerate_dataset_from_nodes(
self, num: int | None = None
) -> QueryResponseDataset:
"""Generates questions for each document."""
return await self._agenerate_dataset(
self.nodes, num=num, generate_response=True
)
def generate_questions_from_nodes(self, num: int | None = None) -> List[str]:
"""Generates questions for each document."""
return asyncio.run(self.agenerate_questions_from_nodes(num=num))
def generate_dataset_from_nodes(
self, num: int | None = None
) -> QueryResponseDataset:
"""Generates questions for each document."""
return asyncio.run(self.agenerate_dataset_from_nodes(num=num))
def _get_prompts(self) -> PromptDictType:
"""Get prompts."""
return {
"text_question_template": self.text_question_template,
"text_qa_template": self.text_qa_template,
}
def _get_prompt_modules(self) -> PromptMixinType:
"""Get prompt modules."""
return {}
def _update_prompts(self, prompts: PromptDictType) -> None:
"""Update prompts."""
if "text_question_template" in prompts:
self.text_question_template = prompts["text_question_template"]
if "text_qa_template" in prompts:
self.text_qa_template = prompts["text_qa_template"]