faiss_rag_enterprise/llama_index/evaluation/multi_modal/relevancy.py

195 lines
7.0 KiB
Python

"""Relevancy evaluation."""
from __future__ import annotations
from typing import Any, List, Sequence, Union
from llama_index.evaluation.base import BaseEvaluator, EvaluationResult
from llama_index.multi_modal_llms.base import MultiModalLLM
from llama_index.multi_modal_llms.openai import OpenAIMultiModal
from llama_index.prompts import BasePromptTemplate, PromptTemplate
from llama_index.prompts.mixin import PromptDictType
from llama_index.schema import ImageNode
DEFAULT_EVAL_TEMPLATE = PromptTemplate(
"Your task is to evaluate if the response for the query \
is in line with the images and textual context information provided.\n"
"You have two options to answer. Either YES/ NO.\n"
"Answer - YES, if the response for the query \
is in line with context information otherwise NO.\n"
"Query and Response: \n {query_str}\n"
"Context: \n {context_str}\n"
"Answer: "
)
DEFAULT_REFINE_TEMPLATE = PromptTemplate(
"We want to understand if the following query and response is"
"in line with the textual and visual context information: \n {query_str}\n"
"We have provided an existing YES/NO answer: \n {existing_answer}\n"
"We have the opportunity to refine the existing answer "
"(only if needed) with some more context below.\n"
"------------\n"
"{context_msg}\n"
"------------\n"
"If the existing answer was already YES, still answer YES. "
"If the information is present in the new context, answer YES. "
"Otherwise answer NO.\n"
)
class MultiModalRelevancyEvaluator(BaseEvaluator):
"""Relevancy evaluator.
Evaluates the relevancy of retrieved image and textual contexts and response to a query.
This evaluator considers the query string, retrieved contexts, and response string.
Args:
multi_modal_llm(Optional[MultiModalLLM]):
The Multi-Modal LLM Judge to use for evaluations.
raise_error(Optional[bool]):
Whether to raise an error if the response is invalid.
Defaults to False.
eval_template(Optional[Union[str, BasePromptTemplate]]):
The template to use for evaluation.
refine_template(Optional[Union[str, BasePromptTemplate]]):
The template to use for refinement.
"""
def __init__(
self,
multi_modal_llm: Union[MultiModalLLM, None] = None,
raise_error: bool = False,
eval_template: Union[str, BasePromptTemplate, None] = None,
refine_template: Union[str, BasePromptTemplate, None] = None,
) -> None:
"""Init params."""
self._multi_modal_llm = multi_modal_llm or OpenAIMultiModal(
model="gpt-4-vision-preview", max_new_tokens=1000
)
self._raise_error = raise_error
self._eval_template: BasePromptTemplate
if isinstance(eval_template, str):
self._eval_template = PromptTemplate(eval_template)
else:
self._eval_template = eval_template or DEFAULT_EVAL_TEMPLATE
self._refine_template: BasePromptTemplate
if isinstance(refine_template, str):
self._refine_template = PromptTemplate(refine_template)
else:
self._refine_template = refine_template or DEFAULT_REFINE_TEMPLATE
def _get_prompts(self) -> PromptDictType:
"""Get prompts."""
return {
"eval_template": self._eval_template,
"refine_template": self._refine_template,
}
def _update_prompts(self, prompts: PromptDictType) -> None:
"""Update prompts."""
if "eval_template" in prompts:
self._eval_template = prompts["eval_template"]
if "refine_template" in prompts:
self._refine_template = prompts["refine_template"]
def evaluate(
self,
query: Union[str, None] = None,
response: Union[str, None] = None,
contexts: Union[Sequence[str], None] = None,
image_paths: Union[List[str], None] = None,
image_urls: Union[List[str], None] = None,
**kwargs: Any,
) -> EvaluationResult:
"""Evaluate whether the multi-modal contexts and response are relevant to the query."""
del kwargs # Unused
if query is None or contexts is None or response is None:
raise ValueError("query, contexts, and response must be provided")
context_str = "\n\n".join(contexts)
evaluation_query_str = f"Question: {query}\nResponse: {response}"
fmt_prompt = self._eval_template.format(
context_str=context_str, query_str=evaluation_query_str
)
if image_paths:
image_nodes = [
ImageNode(image_path=image_path) for image_path in image_paths
]
if image_urls:
image_nodes = [ImageNode(image_url=image_url) for image_url in image_urls]
response_obj = self._multi_modal_llm.complete(
prompt=fmt_prompt,
image_documents=image_nodes,
)
raw_response_txt = str(response_obj)
if "yes" in raw_response_txt.lower():
passing = True
else:
if self._raise_error:
raise ValueError("The response is invalid")
passing = False
return EvaluationResult(
query=query,
response=response,
passing=passing,
score=1.0 if passing else 0.0,
feedback=raw_response_txt,
)
async def aevaluate(
self,
query: Union[str, None] = None,
response: Union[str, None] = None,
contexts: Union[Sequence[str], None] = None,
image_paths: Union[List[str], None] = None,
image_urls: Union[List[str], None] = None,
**kwargs: Any,
) -> EvaluationResult:
"""Async evaluate whether the multi-modal contexts and response are relevant to the query."""
del kwargs # Unused
if query is None or contexts is None or response is None:
raise ValueError("query, contexts, and response must be provided")
context_str = "\n\n".join(contexts)
evaluation_query_str = f"Question: {query}\nResponse: {response}"
fmt_prompt = self._eval_template.format(
context_str=context_str, query_str=evaluation_query_str
)
if image_paths:
image_nodes = [
ImageNode(image_path=image_path) for image_path in image_paths
]
if image_urls:
image_nodes = [ImageNode(image_url=image_url) for image_url in image_urls]
response_obj = await self._multi_modal_llm.acomplete(
prompt=fmt_prompt,
image_documents=image_nodes,
)
raw_response_txt = str(response_obj)
if "yes" in raw_response_txt.lower():
passing = True
else:
if self._raise_error:
raise ValueError("The response is invalid")
passing = False
return EvaluationResult(
query=query,
response=response,
passing=passing,
score=1.0 if passing else 0.0,
feedback=raw_response_txt,
)