faiss_rag_enterprise/llama_index/evaluation/relevancy.py

142 lines
5.0 KiB
Python

"""Relevancy evaluation."""
from __future__ import annotations
import asyncio
from typing import Any, Sequence
from llama_index import ServiceContext
from llama_index.evaluation.base import BaseEvaluator, EvaluationResult
from llama_index.indices import SummaryIndex
from llama_index.prompts import BasePromptTemplate, PromptTemplate
from llama_index.prompts.mixin import PromptDictType
from llama_index.schema import Document
DEFAULT_EVAL_TEMPLATE = PromptTemplate(
"Your task is to evaluate if the response for the query \
is in line with the context information provided.\n"
"You have two options to answer. Either YES/ NO.\n"
"Answer - YES, if the response for the query \
is in line with context information otherwise NO.\n"
"Query and Response: \n {query_str}\n"
"Context: \n {context_str}\n"
"Answer: "
)
DEFAULT_REFINE_TEMPLATE = PromptTemplate(
"We want to understand if the following query and response is"
"in line with the context information: \n {query_str}\n"
"We have provided an existing YES/NO answer: \n {existing_answer}\n"
"We have the opportunity to refine the existing answer "
"(only if needed) with some more context below.\n"
"------------\n"
"{context_msg}\n"
"------------\n"
"If the existing answer was already YES, still answer YES. "
"If the information is present in the new context, answer YES. "
"Otherwise answer NO.\n"
)
class RelevancyEvaluator(BaseEvaluator):
"""Relenvancy evaluator.
Evaluates the relevancy of retrieved contexts and response to a query.
This evaluator considers the query string, retrieved contexts, and response string.
Args:
service_context(Optional[ServiceContext]):
The service context to use for evaluation.
raise_error(Optional[bool]):
Whether to raise an error if the response is invalid.
Defaults to False.
eval_template(Optional[Union[str, BasePromptTemplate]]):
The template to use for evaluation.
refine_template(Optional[Union[str, BasePromptTemplate]]):
The template to use for refinement.
"""
def __init__(
self,
service_context: ServiceContext | None = None,
raise_error: bool = False,
eval_template: str | BasePromptTemplate | None = None,
refine_template: str | BasePromptTemplate | None = None,
) -> None:
"""Init params."""
self._service_context = service_context or ServiceContext.from_defaults()
self._raise_error = raise_error
self._eval_template: BasePromptTemplate
if isinstance(eval_template, str):
self._eval_template = PromptTemplate(eval_template)
else:
self._eval_template = eval_template or DEFAULT_EVAL_TEMPLATE
self._refine_template: BasePromptTemplate
if isinstance(refine_template, str):
self._refine_template = PromptTemplate(refine_template)
else:
self._refine_template = refine_template or DEFAULT_REFINE_TEMPLATE
def _get_prompts(self) -> PromptDictType:
"""Get prompts."""
return {
"eval_template": self._eval_template,
"refine_template": self._refine_template,
}
def _update_prompts(self, prompts: PromptDictType) -> None:
"""Update prompts."""
if "eval_template" in prompts:
self._eval_template = prompts["eval_template"]
if "refine_template" in prompts:
self._refine_template = prompts["refine_template"]
async def aevaluate(
self,
query: str | None = None,
response: str | None = None,
contexts: Sequence[str] | None = None,
sleep_time_in_seconds: int = 0,
**kwargs: Any,
) -> EvaluationResult:
"""Evaluate whether the contexts and response are relevant to the query."""
del kwargs # Unused
if query is None or contexts is None or response is None:
raise ValueError("query, contexts, and response must be provided")
docs = [Document(text=context) for context in contexts]
index = SummaryIndex.from_documents(docs, service_context=self._service_context)
query_response = f"Question: {query}\nResponse: {response}"
await asyncio.sleep(sleep_time_in_seconds)
query_engine = index.as_query_engine(
text_qa_template=self._eval_template,
refine_template=self._refine_template,
)
response_obj = await query_engine.aquery(query_response)
raw_response_txt = str(response_obj)
if "yes" in raw_response_txt.lower():
passing = True
else:
if self._raise_error:
raise ValueError("The response is invalid")
passing = False
return EvaluationResult(
query=query,
response=response,
passing=passing,
score=1.0 if passing else 0.0,
feedback=raw_response_txt,
contexts=contexts,
)
QueryResponseEvaluator = RelevancyEvaluator