faiss_rag_enterprise/llama_index/finetuning/embeddings/adapter_utils.py

151 lines
4.9 KiB
Python

"""Adapter utils."""
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Type
import torch
import transformers
from sentence_transformers.util import cos_sim
from torch import Tensor, nn
from torch.optim import Optimizer
from tqdm.autonotebook import trange
from llama_index.embeddings.adapter_utils import BaseAdapter
from llama_index.utils import print_text
class MyMultipleNegativesRankingLoss(nn.Module):
"""Multiple negatives ranking loss.
This loss is similar to the one in sentence_transformers,
but optimized for our own embeddings.
"""
def __init__(
self,
model: BaseAdapter,
scale: float = 20.0,
similarity_fct: Optional[Callable] = None,
):
"""Define ranking loss."""
super().__init__()
self.model = model
self.scale = scale
self.similarity_fct = cos_sim if similarity_fct is None else similarity_fct
self.cross_entropy_loss = nn.CrossEntropyLoss()
def forward(self, query_embeds: Tensor, context_embeds: Tensor) -> Tensor:
"""Forward pass."""
# transform context embeds
# context_embeds_2 = self.model.forward(context_embeds)
query_embeds_2 = self.model.forward(query_embeds)
scores = self.similarity_fct(query_embeds_2, context_embeds) * self.scale
labels = torch.tensor(
range(len(scores)), dtype=torch.long, device=scores.device
)
return self.cross_entropy_loss(scores, labels)
def train_model(
model: BaseAdapter,
data_loader: torch.utils.data.DataLoader,
device: torch.device,
epochs: int = 1,
steps_per_epoch: Optional[int] = None,
warmup_steps: int = 10000,
optimizer_class: Type[Optimizer] = torch.optim.AdamW,
optimizer_params: Dict[str, Any] = {"lr": 2e-5},
output_path: str = "model_output",
max_grad_norm: float = 1,
show_progress_bar: bool = True,
verbose: bool = False,
# callback: Callable[[float, int, int], None] = None,
# scheduler: str = "WarmupLinear",
# weight_decay: float = 0.01,
# evaluation_steps: int = 0,
# save_best_model: bool = True,
# use_amp: bool = False, # disable this option for now
checkpoint_path: Optional[str] = None,
checkpoint_save_steps: int = 500,
# checkpoint_save_total_limit: int = 0,
) -> None:
"""Train model."""
model.to(device)
# TODO: hardcode loss now, make customizable later
loss_model = MyMultipleNegativesRankingLoss(model=model)
loss_model.to(device)
# prepare optimizer/scheduler
param_optimizer = list(model.named_parameters())
optimizer_grouped_parameters: List[Dict[str, Any]] = [
{
"params": [p for n, p in param_optimizer],
},
]
optimizer = optimizer_class(optimizer_grouped_parameters, **optimizer_params)
if steps_per_epoch is None or steps_per_epoch == 0:
steps_per_epoch = len(data_loader)
num_train_steps = int(steps_per_epoch * epochs)
scheduler_obj = transformers.get_linear_schedule_with_warmup(
optimizer, num_warmup_steps=warmup_steps, num_training_steps=num_train_steps
)
if verbose:
print_text("> Prepared optimizer, scheduler, and loss model.\n", color="blue")
global_step = 0
data_iterator = iter(data_loader)
# if checkpoint_path is specified, create if doesn't exist
if checkpoint_path is not None:
Path(checkpoint_path).mkdir(parents=True, exist_ok=True)
for epoch in trange(epochs, desc="Epoch", disable=not show_progress_bar):
training_steps = 0
loss_model.zero_grad()
loss_model.train()
for _ in trange(
steps_per_epoch,
desc="Iteration",
smoothing=0.05,
disable=not show_progress_bar,
):
try:
data = next(data_iterator)
except StopIteration:
data_iterator = iter(data_loader)
data = next(data_iterator)
query, context = data
context = context.to(device)
query = query.to(device)
loss_value = loss_model(query, context)
if verbose:
print_text(
f"> [Epoch {epoch}] Current loss: {loss_value}\n", color="blue"
)
loss_value.backward()
torch.nn.utils.clip_grad_norm_(loss_model.parameters(), max_grad_norm)
optimizer.step()
optimizer.zero_grad()
scheduler_obj.step()
training_steps += 1
global_step += 1
# TODO: skip eval for now
if checkpoint_path is not None and global_step % checkpoint_save_steps == 0:
full_ck_path = Path(checkpoint_path) / f"step_{global_step}"
model.save(str(full_ck_path))
if verbose:
print_text(f"> Finished training, saving to {output_path}\n", color="blue")
# save model
model.save(output_path)