faiss_rag_enterprise/llama_index/finetuning/openai/validate_json.py

183 lines
6.4 KiB
Python

# Validates training data and estimates token usage
# Copied from https://platform.openai.com/docs/guides/fine-tuning/preparing-your-dataset
# Usage:
# python validate_json.py <path_to_jsonl_file>
# We start by importing the required packages
import json
import os
import sys
from collections import defaultdict
from typing import Dict, List
import numpy as np
import tiktoken
def validate_json(data_path: str) -> None:
# Load dataset
with open(data_path) as f:
dataset = [json.loads(line) for line in f]
# We can inspect the data quickly by checking the number
# of examples and the first item
# Initial dataset stats
print("Num examples:", len(dataset))
print("First example:")
for message in dataset[0]["messages"]:
print(message)
# Now that we have a sense of the data, we need to go through all the different
# examples and check to make sure the formatting is correct and matches the Chat
# completions message structure
# Format error checks
format_errors: Dict[str, int] = defaultdict(int)
for ex in dataset:
if not isinstance(ex, dict):
format_errors["data_type"] += 1
continue
messages = ex.get("messages", None)
if not messages:
format_errors["missing_messages_list"] += 1
continue
for message in messages:
if "role" not in message or "content" not in message:
format_errors["message_missing_key"] += 1
if any(k not in ("role", "content", "name") for k in message):
format_errors["message_unrecognized_key"] += 1
if message.get("role", None) not in ("system", "user", "assistant"):
format_errors["unrecognized_role"] += 1
content = message.get("content", None)
if not content or not isinstance(content, str):
format_errors["missing_content"] += 1
if not any(message.get("role", None) == "assistant" for message in messages):
format_errors["example_missing_assistant_message"] += 1
if format_errors:
print("Found errors:")
for k, v in format_errors.items():
print(f"{k}: {v}")
else:
print("No errors found")
# Beyond the structure of the message, we also need to ensure that the length does
# not exceed the 4096 token limit.
# Token counting functions
encoding = tiktoken.get_encoding("cl100k_base")
# not exact!
# simplified from https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
def num_tokens_from_messages(
messages: List[dict], tokens_per_message: int = 3, tokens_per_name: int = 1
) -> int:
num_tokens = 0
for message in messages:
num_tokens += tokens_per_message
for key, value in message.items():
# NOTE: try to count tokens in function calling (not in cookbook)
if key == "function_call":
value = str(value)
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
num_tokens += 3
return num_tokens
def num_assistant_tokens_from_messages(messages: List[dict]) -> int:
num_tokens = 0
for message in messages:
if message["role"] == "assistant":
num_tokens += len(encoding.encode(message["content"]))
return num_tokens
def print_distribution(values: list, name: str) -> None:
print(f"\n#### Distribution of {name}:")
print(f"min / max: {min(values)}, {max(values)}")
print(f"mean / median: {np.mean(values)}, {np.median(values)}")
print(f"p5 / p95: {np.quantile(values, 0.1)}, {np.quantile(values, 0.9)}")
# Last, we can look at the results of the different formatting operations before
# proceeding with creating a fine-tuning job:
# Warnings and tokens counts
n_missing_system = 0
n_missing_user = 0
n_messages = []
convo_lens = []
assistant_message_lens = []
for ex in dataset:
messages = ex["messages"]
if not any(message["role"] == "system" for message in messages):
n_missing_system += 1
if not any(message["role"] == "user" for message in messages):
n_missing_user += 1
n_messages.append(len(messages))
convo_lens.append(num_tokens_from_messages(messages))
assistant_message_lens.append(num_assistant_tokens_from_messages(messages))
print("Num examples missing system message:", n_missing_system)
print("Num examples missing user message:", n_missing_user)
print_distribution(n_messages, "num_messages_per_example")
print_distribution(convo_lens, "num_total_tokens_per_example")
print_distribution(assistant_message_lens, "num_assistant_tokens_per_example")
n_too_long = sum(length > 4096 for length in convo_lens)
print(
f"\n{n_too_long} examples may be over the 4096 token limit, "
"they will be truncated during fine-tuning"
)
# Pricing and default n_epochs estimate
MAX_TOKENS_PER_EXAMPLE = 4096
MIN_TARGET_EXAMPLES = 100
MAX_TARGET_EXAMPLES = 25000
TARGET_EPOCHS = 3
MIN_EPOCHS = 1
MAX_EPOCHS = 25
n_epochs = TARGET_EPOCHS
n_train_examples = len(dataset)
if n_train_examples * TARGET_EPOCHS < MIN_TARGET_EXAMPLES:
n_epochs = min(MAX_EPOCHS, MIN_TARGET_EXAMPLES // n_train_examples)
elif n_train_examples * TARGET_EPOCHS > MAX_TARGET_EXAMPLES:
n_epochs = max(MIN_EPOCHS, MAX_TARGET_EXAMPLES // n_train_examples)
n_billing_tokens_in_dataset = sum(
min(MAX_TOKENS_PER_EXAMPLE, length) for length in convo_lens
)
print(
f"Dataset has ~{n_billing_tokens_in_dataset} tokens that will "
"be charged for during training"
)
print(f"By default, you'll train for {n_epochs} epochs on this dataset")
print(
"By default, you'll be charged for "
f"~{n_epochs * n_billing_tokens_in_dataset} tokens"
)
print("As of August 22, 2023, fine-tuning gpt-3.5-turbo is $0.008 / 1K Tokens.")
print(
"This means your total cost for training will be "
f"${n_billing_tokens_in_dataset * 0.008 / 1000} per epoch."
)
if __name__ == "__main__":
data_path = sys.argv[1]
if not os.path.exists(data_path):
raise ValueError(f"Path {data_path} does not exist")
validate_json(data_path)