348 lines
11 KiB
Python
348 lines
11 KiB
Python
import warnings
|
|
from typing import Any, Callable, Dict, Optional, Sequence
|
|
|
|
from llama_index.bridge.pydantic import Field, PrivateAttr
|
|
from llama_index.callbacks import CallbackManager
|
|
from llama_index.core.llms.types import (
|
|
ChatMessage,
|
|
ChatResponse,
|
|
ChatResponseAsyncGen,
|
|
ChatResponseGen,
|
|
CompletionResponse,
|
|
CompletionResponseAsyncGen,
|
|
CompletionResponseGen,
|
|
LLMMetadata,
|
|
MessageRole,
|
|
)
|
|
from llama_index.llms.base import (
|
|
llm_chat_callback,
|
|
llm_completion_callback,
|
|
)
|
|
from llama_index.llms.cohere_utils import (
|
|
CHAT_MODELS,
|
|
acompletion_with_retry,
|
|
cohere_modelname_to_contextsize,
|
|
completion_with_retry,
|
|
messages_to_cohere_history,
|
|
)
|
|
from llama_index.llms.llm import LLM
|
|
from llama_index.types import BaseOutputParser, PydanticProgramMode
|
|
|
|
|
|
class Cohere(LLM):
|
|
model: str = Field(description="The cohere model to use.")
|
|
temperature: float = Field(description="The temperature to use for sampling.")
|
|
max_retries: int = Field(
|
|
default=10, description="The maximum number of API retries."
|
|
)
|
|
additional_kwargs: Dict[str, Any] = Field(
|
|
default_factory=dict, description="Additional kwargs for the Cohere API."
|
|
)
|
|
max_tokens: int = Field(description="The maximum number of tokens to generate.")
|
|
|
|
_client: Any = PrivateAttr()
|
|
_aclient: Any = PrivateAttr()
|
|
|
|
def __init__(
|
|
self,
|
|
model: str = "command",
|
|
temperature: float = 0.5,
|
|
max_tokens: int = 512,
|
|
timeout: Optional[float] = None,
|
|
max_retries: int = 10,
|
|
api_key: Optional[str] = None,
|
|
additional_kwargs: Optional[Dict[str, Any]] = None,
|
|
callback_manager: Optional[CallbackManager] = None,
|
|
system_prompt: Optional[str] = None,
|
|
messages_to_prompt: Optional[Callable[[Sequence[ChatMessage]], str]] = None,
|
|
completion_to_prompt: Optional[Callable[[str], str]] = None,
|
|
pydantic_program_mode: PydanticProgramMode = PydanticProgramMode.DEFAULT,
|
|
output_parser: Optional[BaseOutputParser] = None,
|
|
) -> None:
|
|
try:
|
|
import cohere
|
|
except ImportError as e:
|
|
raise ImportError(
|
|
"You must install the `cohere` package to use Cohere."
|
|
"Please `pip install cohere`"
|
|
) from e
|
|
additional_kwargs = additional_kwargs or {}
|
|
callback_manager = callback_manager or CallbackManager([])
|
|
|
|
self._client = cohere.Client(api_key, client_name="llama_index")
|
|
self._aclient = cohere.AsyncClient(api_key, client_name="llama_index")
|
|
|
|
super().__init__(
|
|
temperature=temperature,
|
|
additional_kwargs=additional_kwargs,
|
|
timeout=timeout,
|
|
max_retries=max_retries,
|
|
model=model,
|
|
callback_manager=callback_manager,
|
|
max_tokens=max_tokens,
|
|
system_prompt=system_prompt,
|
|
messages_to_prompt=messages_to_prompt,
|
|
completion_to_prompt=completion_to_prompt,
|
|
pydantic_program_mode=pydantic_program_mode,
|
|
output_parser=output_parser,
|
|
)
|
|
|
|
@classmethod
|
|
def class_name(cls) -> str:
|
|
"""Get class name."""
|
|
return "Cohere_LLM"
|
|
|
|
@property
|
|
def metadata(self) -> LLMMetadata:
|
|
return LLMMetadata(
|
|
context_window=cohere_modelname_to_contextsize(self.model),
|
|
num_output=self.max_tokens,
|
|
is_chat_model=True,
|
|
model_name=self.model,
|
|
system_role=MessageRole.CHATBOT,
|
|
)
|
|
|
|
@property
|
|
def _model_kwargs(self) -> Dict[str, Any]:
|
|
base_kwargs = {
|
|
"model": self.model,
|
|
"temperature": self.temperature,
|
|
}
|
|
return {
|
|
**base_kwargs,
|
|
**self.additional_kwargs,
|
|
}
|
|
|
|
def _get_all_kwargs(self, **kwargs: Any) -> Dict[str, Any]:
|
|
return {
|
|
**self._model_kwargs,
|
|
**kwargs,
|
|
}
|
|
|
|
@llm_chat_callback()
|
|
def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
|
|
history = messages_to_cohere_history(messages[:-1])
|
|
prompt = messages[-1].content
|
|
all_kwargs = self._get_all_kwargs(**kwargs)
|
|
if all_kwargs["model"] not in CHAT_MODELS:
|
|
raise ValueError(f"{all_kwargs['model']} not supported for chat")
|
|
|
|
if "stream" in all_kwargs:
|
|
warnings.warn(
|
|
"Parameter `stream` is not supported by the `chat` method."
|
|
"Use the `stream_chat` method instead"
|
|
)
|
|
response = completion_with_retry(
|
|
client=self._client,
|
|
max_retries=self.max_retries,
|
|
chat=True,
|
|
message=prompt,
|
|
chat_history=history,
|
|
**all_kwargs,
|
|
)
|
|
return ChatResponse(
|
|
message=ChatMessage(role=MessageRole.ASSISTANT, content=response.text),
|
|
raw=response.__dict__,
|
|
)
|
|
|
|
@llm_completion_callback()
|
|
def complete(
|
|
self, prompt: str, formatted: bool = False, **kwargs: Any
|
|
) -> CompletionResponse:
|
|
all_kwargs = self._get_all_kwargs(**kwargs)
|
|
if "stream" in all_kwargs:
|
|
warnings.warn(
|
|
"Parameter `stream` is not supported by the `chat` method."
|
|
"Use the `stream_chat` method instead"
|
|
)
|
|
|
|
response = completion_with_retry(
|
|
client=self._client,
|
|
max_retries=self.max_retries,
|
|
chat=False,
|
|
prompt=prompt,
|
|
**all_kwargs,
|
|
)
|
|
|
|
return CompletionResponse(
|
|
text=response.generations[0].text,
|
|
raw=response.__dict__,
|
|
)
|
|
|
|
@llm_chat_callback()
|
|
def stream_chat(
|
|
self, messages: Sequence[ChatMessage], **kwargs: Any
|
|
) -> ChatResponseGen:
|
|
history = messages_to_cohere_history(messages[:-1])
|
|
prompt = messages[-1].content
|
|
all_kwargs = self._get_all_kwargs(**kwargs)
|
|
all_kwargs["stream"] = True
|
|
if all_kwargs["model"] not in CHAT_MODELS:
|
|
raise ValueError(f"{all_kwargs['model']} not supported for chat")
|
|
response = completion_with_retry(
|
|
client=self._client,
|
|
max_retries=self.max_retries,
|
|
chat=True,
|
|
message=prompt,
|
|
chat_history=history,
|
|
**all_kwargs,
|
|
)
|
|
|
|
def gen() -> ChatResponseGen:
|
|
content = ""
|
|
role = MessageRole.ASSISTANT
|
|
for r in response:
|
|
if "text" in r.__dict__:
|
|
content_delta = r.text
|
|
else:
|
|
content_delta = ""
|
|
content += content_delta
|
|
yield ChatResponse(
|
|
message=ChatMessage(role=role, content=content),
|
|
delta=content_delta,
|
|
raw=r.__dict__,
|
|
)
|
|
|
|
return gen()
|
|
|
|
@llm_completion_callback()
|
|
def stream_complete(
|
|
self, prompt: str, formatted: bool = False, **kwargs: Any
|
|
) -> CompletionResponseGen:
|
|
all_kwargs = self._get_all_kwargs(**kwargs)
|
|
all_kwargs["stream"] = True
|
|
|
|
response = completion_with_retry(
|
|
client=self._client,
|
|
max_retries=self.max_retries,
|
|
chat=False,
|
|
prompt=prompt,
|
|
**all_kwargs,
|
|
)
|
|
|
|
def gen() -> CompletionResponseGen:
|
|
content = ""
|
|
for r in response:
|
|
content_delta = r.text
|
|
content += content_delta
|
|
yield CompletionResponse(
|
|
text=content, delta=content_delta, raw=r._asdict()
|
|
)
|
|
|
|
return gen()
|
|
|
|
@llm_chat_callback()
|
|
async def achat(
|
|
self, messages: Sequence[ChatMessage], **kwargs: Any
|
|
) -> ChatResponse:
|
|
history = messages_to_cohere_history(messages[:-1])
|
|
prompt = messages[-1].content
|
|
all_kwargs = self._get_all_kwargs(**kwargs)
|
|
if all_kwargs["model"] not in CHAT_MODELS:
|
|
raise ValueError(f"{all_kwargs['model']} not supported for chat")
|
|
if "stream" in all_kwargs:
|
|
warnings.warn(
|
|
"Parameter `stream` is not supported by the `chat` method."
|
|
"Use the `stream_chat` method instead"
|
|
)
|
|
|
|
response = await acompletion_with_retry(
|
|
aclient=self._aclient,
|
|
max_retries=self.max_retries,
|
|
chat=True,
|
|
message=prompt,
|
|
chat_history=history,
|
|
**all_kwargs,
|
|
)
|
|
|
|
return ChatResponse(
|
|
message=ChatMessage(role=MessageRole.ASSISTANT, content=response.text),
|
|
raw=response.__dict__,
|
|
)
|
|
|
|
@llm_completion_callback()
|
|
async def acomplete(
|
|
self, prompt: str, formatted: bool = False, **kwargs: Any
|
|
) -> CompletionResponse:
|
|
all_kwargs = self._get_all_kwargs(**kwargs)
|
|
if "stream" in all_kwargs:
|
|
warnings.warn(
|
|
"Parameter `stream` is not supported by the `chat` method."
|
|
"Use the `stream_chat` method instead"
|
|
)
|
|
|
|
response = await acompletion_with_retry(
|
|
aclient=self._aclient,
|
|
max_retries=self.max_retries,
|
|
chat=False,
|
|
prompt=prompt,
|
|
**all_kwargs,
|
|
)
|
|
|
|
return CompletionResponse(
|
|
text=response.generations[0].text,
|
|
raw=response.__dict__,
|
|
)
|
|
|
|
@llm_chat_callback()
|
|
async def astream_chat(
|
|
self, messages: Sequence[ChatMessage], **kwargs: Any
|
|
) -> ChatResponseAsyncGen:
|
|
history = messages_to_cohere_history(messages[:-1])
|
|
prompt = messages[-1].content
|
|
all_kwargs = self._get_all_kwargs(**kwargs)
|
|
all_kwargs["stream"] = True
|
|
if all_kwargs["model"] not in CHAT_MODELS:
|
|
raise ValueError(f"{all_kwargs['model']} not supported for chat")
|
|
response = await acompletion_with_retry(
|
|
aclient=self._aclient,
|
|
max_retries=self.max_retries,
|
|
chat=True,
|
|
message=prompt,
|
|
chat_history=history,
|
|
**all_kwargs,
|
|
)
|
|
|
|
async def gen() -> ChatResponseAsyncGen:
|
|
content = ""
|
|
role = MessageRole.ASSISTANT
|
|
async for r in response:
|
|
if "text" in r.__dict__:
|
|
content_delta = r.text
|
|
else:
|
|
content_delta = ""
|
|
content += content_delta
|
|
yield ChatResponse(
|
|
message=ChatMessage(role=role, content=content),
|
|
delta=content_delta,
|
|
raw=r.__dict__,
|
|
)
|
|
|
|
return gen()
|
|
|
|
@llm_completion_callback()
|
|
async def astream_complete(
|
|
self, prompt: str, formatted: bool = False, **kwargs: Any
|
|
) -> CompletionResponseAsyncGen:
|
|
all_kwargs = self._get_all_kwargs(**kwargs)
|
|
all_kwargs["stream"] = True
|
|
|
|
response = await acompletion_with_retry(
|
|
aclient=self._aclient,
|
|
max_retries=self.max_retries,
|
|
chat=False,
|
|
prompt=prompt,
|
|
**all_kwargs,
|
|
)
|
|
|
|
async def gen() -> CompletionResponseAsyncGen:
|
|
content = ""
|
|
async for r in response:
|
|
content_delta = r.text
|
|
content += content_delta
|
|
yield CompletionResponse(
|
|
text=content, delta=content_delta, raw=r._asdict()
|
|
)
|
|
|
|
return gen()
|