faiss_rag_enterprise/llama_index/llms/gradient.py

196 lines
6.0 KiB
Python

from typing import Any, Callable, Optional, Sequence
from typing_extensions import override
from llama_index.bridge.pydantic import Field, PrivateAttr
from llama_index.callbacks import CallbackManager
from llama_index.constants import DEFAULT_NUM_OUTPUTS
from llama_index.core.llms.types import (
ChatMessage,
CompletionResponse,
CompletionResponseGen,
LLMMetadata,
)
from llama_index.llms.base import llm_completion_callback
from llama_index.llms.custom import CustomLLM
from llama_index.types import BaseOutputParser, PydanticProgramMode
class _BaseGradientLLM(CustomLLM):
_gradient = PrivateAttr()
_model = PrivateAttr()
# Config
max_tokens: Optional[int] = Field(
default=DEFAULT_NUM_OUTPUTS,
description="The number of tokens to generate.",
gt=0,
lt=512,
)
# Gradient client config
access_token: Optional[str] = Field(
description="The Gradient access token to use.",
)
host: Optional[str] = Field(
description="The url of the Gradient service to access."
)
workspace_id: Optional[str] = Field(
description="The Gradient workspace id to use.",
)
is_chat_model: bool = Field(
default=False, description="Whether the model is a chat model."
)
def __init__(
self,
*,
access_token: Optional[str] = None,
host: Optional[str] = None,
max_tokens: Optional[int] = None,
workspace_id: Optional[str] = None,
callback_manager: Optional[CallbackManager] = None,
is_chat_model: bool = False,
system_prompt: Optional[str] = None,
messages_to_prompt: Optional[Callable[[Sequence[ChatMessage]], str]] = None,
completion_to_prompt: Optional[Callable[[str], str]] = None,
pydantic_program_mode: PydanticProgramMode = PydanticProgramMode.DEFAULT,
output_parser: Optional[BaseOutputParser] = None,
**kwargs: Any,
) -> None:
super().__init__(
max_tokens=max_tokens,
access_token=access_token,
host=host,
workspace_id=workspace_id,
callback_manager=callback_manager,
is_chat_model=is_chat_model,
system_prompt=system_prompt,
messages_to_prompt=messages_to_prompt,
completion_to_prompt=completion_to_prompt,
pydantic_program_mode=pydantic_program_mode,
output_parser=output_parser,
**kwargs,
)
try:
from gradientai import Gradient
self._gradient = Gradient(
access_token=access_token, host=host, workspace_id=workspace_id
)
except ImportError as e:
raise ImportError(
"Could not import Gradient Python package. "
"Please install it with `pip install gradientai`."
) from e
def close(self) -> None:
self._gradient.close()
@llm_completion_callback()
@override
def complete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponse:
return CompletionResponse(
text=self._model.complete(
query=prompt,
max_generated_token_count=self.max_tokens,
**kwargs,
).generated_output
)
@llm_completion_callback()
@override
async def acomplete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponse:
grdt_reponse = await self._model.acomplete(
query=prompt,
max_generated_token_count=self.max_tokens,
**kwargs,
)
return CompletionResponse(text=grdt_reponse.generated_output)
@override
def stream_complete(
self,
prompt: str,
formatted: bool = False,
**kwargs: Any,
) -> CompletionResponseGen:
raise NotImplementedError
@property
@override
def metadata(self) -> LLMMetadata:
return LLMMetadata(
context_window=1024,
num_output=self.max_tokens or 20,
is_chat_model=self.is_chat_model,
is_function_calling_model=False,
model_name=self._model.id,
)
class GradientBaseModelLLM(_BaseGradientLLM):
base_model_slug: str = Field(
description="The slug of the base model to use.",
)
def __init__(
self,
*,
access_token: Optional[str] = None,
base_model_slug: str,
host: Optional[str] = None,
max_tokens: Optional[int] = None,
workspace_id: Optional[str] = None,
callback_manager: Optional[CallbackManager] = None,
is_chat_model: bool = False,
) -> None:
super().__init__(
access_token=access_token,
base_model_slug=base_model_slug,
host=host,
max_tokens=max_tokens,
workspace_id=workspace_id,
callback_manager=callback_manager,
is_chat_model=is_chat_model,
)
self._model = self._gradient.get_base_model(
base_model_slug=base_model_slug,
)
class GradientModelAdapterLLM(_BaseGradientLLM):
model_adapter_id: str = Field(
description="The id of the model adapter to use.",
)
def __init__(
self,
*,
access_token: Optional[str] = None,
host: Optional[str] = None,
max_tokens: Optional[int] = None,
model_adapter_id: str,
workspace_id: Optional[str] = None,
callback_manager: Optional[CallbackManager] = None,
is_chat_model: bool = False,
) -> None:
super().__init__(
access_token=access_token,
host=host,
max_tokens=max_tokens,
model_adapter_id=model_adapter_id,
workspace_id=workspace_id,
callback_manager=callback_manager,
is_chat_model=is_chat_model,
)
self._model = self._gradient.get_model_adapter(
model_adapter_id=model_adapter_id
)