faiss_rag_enterprise/llama_index/llms/konko.py

630 lines
22 KiB
Python

from dataclasses import dataclass
from typing import Any, Awaitable, Callable, Dict, Optional, Sequence
from llama_index.bridge.pydantic import Field
from llama_index.callbacks import CallbackManager
from llama_index.constants import DEFAULT_NUM_OUTPUTS, DEFAULT_TEMPERATURE
from llama_index.core.llms.types import (
ChatMessage,
ChatResponse,
ChatResponseAsyncGen,
ChatResponseGen,
CompletionResponse,
CompletionResponseAsyncGen,
CompletionResponseGen,
LLMMetadata,
)
from llama_index.llms.base import llm_chat_callback, llm_completion_callback
from llama_index.llms.generic_utils import (
achat_to_completion_decorator,
acompletion_to_chat_decorator,
astream_chat_to_completion_decorator,
astream_completion_to_chat_decorator,
chat_to_completion_decorator,
completion_to_chat_decorator,
stream_chat_to_completion_decorator,
stream_completion_to_chat_decorator,
)
from llama_index.llms.konko_utils import (
acompletion_with_retry,
completion_with_retry,
from_openai_message_dict,
import_konko,
is_openai_v1,
resolve_konko_credentials,
to_openai_message_dicts,
)
from llama_index.llms.llm import LLM
from llama_index.types import BaseOutputParser, PydanticProgramMode
DEFAULT_KONKO_MODEL = "meta-llama/llama-2-13b-chat"
@dataclass
class ModelInfo:
name: str
max_context_length: int
is_chat_model: bool
class Konko(LLM):
model: str = Field(
default=DEFAULT_KONKO_MODEL, description="The konko model to use."
)
temperature: float = Field(
default=DEFAULT_TEMPERATURE,
description="The temperature to use during generation.",
gte=0.0,
lte=1.0,
)
max_tokens: Optional[int] = Field(
default=DEFAULT_NUM_OUTPUTS,
description="The maximum number of tokens to generate.",
gt=0,
)
additional_kwargs: Dict[str, Any] = Field(
default_factory=dict, description="Additional kwargs for the konko API."
)
max_retries: int = Field(
default=10, description="The maximum number of API retries.", gte=0
)
konko_api_key: str = Field(default=None, description="The konko API key.")
openai_api_key: str = Field(default=None, description="The Openai API key.")
api_type: str = Field(default=None, description="The konko API type.")
model_info_dict: Dict[str, ModelInfo]
def __init__(
self,
model: str = DEFAULT_KONKO_MODEL,
temperature: float = DEFAULT_TEMPERATURE,
max_tokens: Optional[int] = DEFAULT_NUM_OUTPUTS,
additional_kwargs: Optional[Dict[str, Any]] = None,
max_retries: int = 10,
konko_api_key: Optional[str] = None,
openai_api_key: Optional[str] = None,
api_type: Optional[str] = None,
api_base: Optional[str] = None,
api_version: Optional[str] = None,
callback_manager: Optional[CallbackManager] = None,
system_prompt: Optional[str] = None,
messages_to_prompt: Optional[Callable[[Sequence[ChatMessage]], str]] = None,
completion_to_prompt: Optional[Callable[[str], str]] = None,
pydantic_program_mode: PydanticProgramMode = PydanticProgramMode.DEFAULT,
output_parser: Optional[BaseOutputParser] = None,
model_info_dict: Optional[Dict[str, ModelInfo]] = None,
**kwargs: Any,
) -> None:
additional_kwargs = additional_kwargs or {}
(
konko_api_key,
openai_api_key,
api_type,
api_base,
api_version,
) = resolve_konko_credentials(
konko_api_key=konko_api_key,
openai_api_key=openai_api_key,
api_type=api_type,
api_base=api_base,
api_version=api_version,
)
super().__init__(
model=model,
temperature=temperature,
max_tokens=max_tokens,
additional_kwargs=additional_kwargs,
max_retries=max_retries,
callback_manager=callback_manager,
konko_api_key=konko_api_key,
openai_api_key=openai_api_key,
api_type=api_type,
api_version=api_version,
api_base=api_base,
system_prompt=system_prompt,
messages_to_prompt=messages_to_prompt,
completion_to_prompt=completion_to_prompt,
pydantic_program_mode=pydantic_program_mode,
output_parser=output_parser,
model_info_dict=self._create_model_info_dict(),
**kwargs,
)
def _get_model_name(self) -> str:
return self.model
@classmethod
def class_name(cls) -> str:
return "Konko_LLM"
def _create_model_info_dict(self) -> Dict[str, ModelInfo]:
konko = import_konko()
models_info_dict = {}
if is_openai_v1():
models = konko.models.list().data
for model in models:
model_info = ModelInfo(
name=model.name,
max_context_length=model.max_context_length,
is_chat_model=model.is_chat,
)
models_info_dict[model.name] = model_info
else:
models = konko.Model.list().data
for model in models:
model_info = ModelInfo(
name=model["name"],
max_context_length=model["max_context_length"],
is_chat_model=model["is_chat"],
)
models_info_dict[model["name"]] = model_info
return models_info_dict
def _get_model_info(self) -> ModelInfo:
model_name = self._get_model_name()
model_info = self.model_info_dict.get(model_name)
if model_info is None:
raise ValueError(
f"Unknown model: {model_name}. Please provide a valid Konko model name. "
"Known models are: " + ", ".join(self.model_info_dict.keys())
)
return model_info
def _is_chat_model(self) -> bool:
"""
Check if the specified model is a chat model.
Args:
- model_id (str): The ID of the model to check.
Returns:
- bool: True if the model is a chat model, False otherwise.
Raises:
- ValueError: If the model_id is not found in the list of models.
"""
model_info = self._get_model_info()
return model_info.is_chat_model
@property
def metadata(self) -> LLMMetadata:
model_info = self._get_model_info()
return LLMMetadata(
context_window=model_info.max_context_length,
num_output=self.max_tokens,
is_chat_model=model_info.is_chat_model,
model_name=self.model,
)
@llm_chat_callback()
def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
if self._is_chat_model():
chat_fn = self._chat
else:
chat_fn = completion_to_chat_decorator(self._complete)
return chat_fn(messages, **kwargs)
@llm_chat_callback()
def stream_chat(
self, messages: Sequence[ChatMessage], **kwargs: Any
) -> ChatResponseGen:
if self._is_chat_model():
stream_chat_fn = self._stream_chat
else:
stream_chat_fn = stream_completion_to_chat_decorator(self._stream_complete)
return stream_chat_fn(messages, **kwargs)
@property
def _credential_kwargs(self) -> Dict[str, Any]:
return {
"konko_api_key": self.konko_api_key,
"api_type": self.api_type,
"openai_api_key": self.openai_api_key,
}
@property
def _model_kwargs(self) -> Dict[str, Any]:
base_kwargs = {
"model": self.model,
"temperature": self.temperature,
"max_tokens": self.max_tokens,
}
return {
**base_kwargs,
**self.additional_kwargs,
}
def _get_all_kwargs(self, **kwargs: Any) -> Dict[str, Any]:
return {
**self._model_kwargs,
**kwargs,
}
def _chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
if not self._is_chat_model():
raise ValueError("This model is not a chat model.")
message_dicts = to_openai_message_dicts(messages)
all_kwargs = self._get_all_kwargs(**kwargs)
response = completion_with_retry(
is_chat_model=self._is_chat_model(),
max_retries=self.max_retries,
messages=message_dicts,
stream=False,
**all_kwargs,
)
if is_openai_v1():
message_dict = response.choices[0].message
else:
message_dict = response["choices"][0]["message"]
message = from_openai_message_dict(message_dict)
return ChatResponse(
message=message,
raw=response,
additional_kwargs=self._get_response_token_counts(response),
)
def _stream_chat(
self, messages: Sequence[ChatMessage], **kwargs: Any
) -> ChatResponseGen:
if not self._is_chat_model():
raise ValueError("This model is not a chat model.")
message_dicts = to_openai_message_dicts(messages)
all_kwargs = self._get_all_kwargs(**kwargs)
def gen() -> ChatResponseGen:
content = ""
for response in completion_with_retry(
is_chat_model=self._is_chat_model(),
max_retries=self.max_retries,
messages=message_dicts,
stream=True,
**all_kwargs,
):
if is_openai_v1():
if len(response.choices) == 0 and response.prompt_annotations:
continue
delta = (
response.choices[0].delta if len(response.choices) > 0 else {}
)
role_value = delta.role
content_delta = delta.content or ""
else:
if "choices" not in response or len(response["choices"]) == 0:
continue
delta = response["choices"][0].get("delta", {})
role_value = delta["role"]
content_delta = delta["content"] or ""
role = role_value if role_value is not None else "assistant"
content += content_delta
yield ChatResponse(
message=ChatMessage(
role=role,
content=content,
),
delta=content_delta,
raw=response,
additional_kwargs=self._get_response_token_counts(response),
)
return gen()
@llm_completion_callback()
def complete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponse:
if self._is_chat_model():
complete_fn = chat_to_completion_decorator(self._chat)
else:
complete_fn = self._complete
return complete_fn(prompt, **kwargs)
@llm_completion_callback()
def stream_complete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponseGen:
if self._is_chat_model():
stream_complete_fn = stream_chat_to_completion_decorator(self._stream_chat)
else:
stream_complete_fn = self._stream_complete
return stream_complete_fn(prompt, **kwargs)
def _get_response_token_counts(self, raw_response: Any) -> dict:
"""Get the token usage reported by the response."""
if not isinstance(raw_response, dict):
return {}
usage = raw_response.get("usage", {})
# NOTE: other model providers that use the OpenAI client may not report usage
if usage is None:
return {}
return {
"prompt_tokens": usage.get("prompt_tokens", 0),
"completion_tokens": usage.get("completion_tokens", 0),
"total_tokens": usage.get("total_tokens", 0),
}
def _complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
if self._is_chat_model():
raise ValueError("This model is a chat model.")
all_kwargs = self._get_all_kwargs(**kwargs)
if self.max_tokens is None:
# NOTE: non-chat completion endpoint requires max_tokens to be set
max_tokens = self._get_max_token_for_prompt(prompt)
all_kwargs["max_tokens"] = max_tokens
response = completion_with_retry(
is_chat_model=self._is_chat_model(),
max_retries=self.max_retries,
prompt=prompt,
stream=False,
**all_kwargs,
)
if is_openai_v1():
text = response.choices[0].text
else:
text = response["choices"][0]["text"]
return CompletionResponse(
text=text,
raw=response,
additional_kwargs=self._get_response_token_counts(response),
)
def _stream_complete(self, prompt: str, **kwargs: Any) -> CompletionResponseGen:
if self._is_chat_model():
raise ValueError("This model is a chat model.")
all_kwargs = self._get_all_kwargs(**kwargs)
if self.max_tokens is None:
# NOTE: non-chat completion endpoint requires max_tokens to be set
max_tokens = self._get_max_token_for_prompt(prompt)
all_kwargs["max_tokens"] = max_tokens
def gen() -> CompletionResponseGen:
text = ""
for response in completion_with_retry(
is_chat_model=self._is_chat_model(),
max_retries=self.max_retries,
prompt=prompt,
stream=True,
**all_kwargs,
):
if is_openai_v1():
if len(response.choices) > 0:
delta = response.choices[0].text
else:
delta = ""
else:
if len(response["choices"]) > 0:
delta = response["choices"][0].text
else:
delta = ""
text += delta
yield CompletionResponse(
delta=delta,
text=text,
raw=response,
additional_kwargs=self._get_response_token_counts(response),
)
return gen()
def _get_max_token_for_prompt(self, prompt: str) -> int:
try:
import tiktoken
except ImportError:
raise ImportError(
"Please install tiktoken to use the max_tokens=None feature."
)
context_window = self.metadata.context_window
encoding = tiktoken.encoding_for_model(self._get_model_name())
tokens = encoding.encode(prompt)
max_token = context_window - len(tokens)
if max_token <= 0:
raise ValueError(
f"The prompt is too long for the model. "
f"Please use a prompt that is less than {context_window} tokens."
)
return max_token
# ===== Async Endpoints =====
@llm_chat_callback()
async def achat(
self,
messages: Sequence[ChatMessage],
**kwargs: Any,
) -> ChatResponse:
achat_fn: Callable[..., Awaitable[ChatResponse]]
if self._is_chat_model():
achat_fn = self._achat
else:
achat_fn = acompletion_to_chat_decorator(self._acomplete)
return await achat_fn(messages, **kwargs)
@llm_chat_callback()
async def astream_chat(
self,
messages: Sequence[ChatMessage],
**kwargs: Any,
) -> ChatResponseAsyncGen:
astream_chat_fn: Callable[..., Awaitable[ChatResponseAsyncGen]]
if self._is_chat_model():
astream_chat_fn = self._astream_chat
else:
astream_chat_fn = astream_completion_to_chat_decorator(
self._astream_complete
)
return await astream_chat_fn(messages, **kwargs)
@llm_completion_callback()
async def acomplete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponse:
if self._is_chat_model():
acomplete_fn = achat_to_completion_decorator(self._achat)
else:
acomplete_fn = self._acomplete
return await acomplete_fn(prompt, **kwargs)
@llm_completion_callback()
async def astream_complete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponseAsyncGen:
if self._is_chat_model():
astream_complete_fn = astream_chat_to_completion_decorator(
self._astream_chat
)
else:
astream_complete_fn = self._astream_complete
return await astream_complete_fn(prompt, **kwargs)
async def _achat(
self, messages: Sequence[ChatMessage], **kwargs: Any
) -> ChatResponse:
if not self._is_chat_model():
raise ValueError("This model is not a chat model.")
message_dicts = to_openai_message_dicts(messages)
all_kwargs = self._get_all_kwargs(**kwargs)
response = await acompletion_with_retry(
is_chat_model=self._is_chat_model(),
max_retries=self.max_retries,
messages=message_dicts,
stream=False,
**all_kwargs,
)
if is_openai_v1: # type: ignore
message_dict = response.choices[0].message
else:
message_dict = response["choices"][0]["message"]
message = from_openai_message_dict(message_dict)
return ChatResponse(
message=message,
raw=response,
additional_kwargs=self._get_response_token_counts(response),
)
async def _astream_chat(
self, messages: Sequence[ChatMessage], **kwargs: Any
) -> ChatResponseAsyncGen:
if not self._is_chat_model():
raise ValueError("This model is not a chat model.")
message_dicts = to_openai_message_dicts(messages)
all_kwargs = self._get_all_kwargs(**kwargs)
async def gen() -> ChatResponseAsyncGen:
content = ""
function_call: Optional[dict] = None
async for response in await acompletion_with_retry(
is_chat_model=self._is_chat_model(),
max_retries=self.max_retries,
messages=message_dicts,
stream=True,
**all_kwargs,
):
if is_openai_v1():
if len(response.choices) > 0:
delta = response.choices[0].delta
else:
delta = {}
role = delta.role
content_delta = delta.content
else:
if len(response["choices"]) > 0:
delta = response["choices"][0].delta
else:
delta = {}
role = delta["role"]
content_delta = delta["content"]
content += content_delta
yield ChatResponse(
message=ChatMessage(
role=role,
content=content,
),
delta=content_delta,
raw=response,
additional_kwargs=self._get_response_token_counts(response),
)
return gen()
async def _acomplete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
if self._is_chat_model():
raise ValueError("This model is a chat model.")
all_kwargs = self._get_all_kwargs(**kwargs)
if self.max_tokens is None:
# NOTE: non-chat completion endpoint requires max_tokens to be set
max_tokens = self._get_max_token_for_prompt(prompt)
all_kwargs["max_tokens"] = max_tokens
response = await acompletion_with_retry(
is_chat_model=self._is_chat_model(),
max_retries=self.max_retries,
prompt=prompt,
stream=False,
**all_kwargs,
)
if is_openai_v1():
text = response.choices[0].text
else:
text = response["choices"][0]["text"]
return CompletionResponse(
text=text,
raw=response,
additional_kwargs=self._get_response_token_counts(response),
)
async def _astream_complete(
self, prompt: str, **kwargs: Any
) -> CompletionResponseAsyncGen:
if self._is_chat_model():
raise ValueError("This model is a chat model.")
all_kwargs = self._get_all_kwargs(**kwargs)
if self.max_tokens is None:
# NOTE: non-chat completion endpoint requires max_tokens to be set
max_tokens = self._get_max_token_for_prompt(prompt)
all_kwargs["max_tokens"] = max_tokens
async def gen() -> CompletionResponseAsyncGen:
text = ""
async for response in await acompletion_with_retry(
is_chat_model=self._is_chat_model(),
max_retries=self.max_retries,
prompt=prompt,
stream=True,
**all_kwargs,
):
if is_openai_v1():
if len(response.choices) > 0:
delta = response.choices[0].text
else:
delta = ""
else:
if len(response["choices"]) > 0:
delta = response["choices"][0].text
else:
delta = ""
text += delta
yield CompletionResponse(
delta=delta,
text=text,
raw=response,
additional_kwargs=self._get_response_token_counts(response),
)
return gen()