faiss_rag_enterprise/llama_index/llms/llama_api.py

129 lines
4.4 KiB
Python

from typing import Any, Callable, Dict, Optional, Sequence
from llama_index.bridge.pydantic import Field, PrivateAttr
from llama_index.callbacks import CallbackManager
from llama_index.constants import DEFAULT_NUM_OUTPUTS
from llama_index.core.llms.types import (
ChatMessage,
ChatResponse,
ChatResponseGen,
CompletionResponse,
CompletionResponseGen,
LLMMetadata,
)
from llama_index.llms.base import llm_chat_callback, llm_completion_callback
from llama_index.llms.custom import CustomLLM
from llama_index.llms.generic_utils import chat_to_completion_decorator
from llama_index.llms.openai_utils import (
from_openai_message_dict,
to_openai_message_dicts,
)
from llama_index.types import BaseOutputParser, PydanticProgramMode
class LlamaAPI(CustomLLM):
model: str = Field(description="The llama-api model to use.")
temperature: float = Field(description="The temperature to use for sampling.")
max_tokens: int = Field(description="The maximum number of tokens to generate.")
additional_kwargs: Dict[str, Any] = Field(
default_factory=dict, description="Additional kwargs for the llama-api API."
)
_client: Any = PrivateAttr()
def __init__(
self,
model: str = "llama-13b-chat",
temperature: float = 0.1,
max_tokens: int = DEFAULT_NUM_OUTPUTS,
additional_kwargs: Optional[Dict[str, Any]] = None,
api_key: Optional[str] = None,
callback_manager: Optional[CallbackManager] = None,
system_prompt: Optional[str] = None,
messages_to_prompt: Optional[Callable[[Sequence[ChatMessage]], str]] = None,
completion_to_prompt: Optional[Callable[[str], str]] = None,
pydantic_program_mode: PydanticProgramMode = PydanticProgramMode.DEFAULT,
output_parser: Optional[BaseOutputParser] = None,
) -> None:
try:
from llamaapi import LlamaAPI as Client
except ImportError as e:
raise ImportError(
"llama_api not installed."
"Please install it with `pip install llamaapi`."
) from e
self._client = Client(api_key)
super().__init__(
model=model,
temperature=temperature,
max_tokens=max_tokens,
additional_kwargs=additional_kwargs or {},
callback_manager=callback_manager,
system_prompt=system_prompt,
messages_to_prompt=messages_to_prompt,
completion_to_prompt=completion_to_prompt,
pydantic_program_mode=pydantic_program_mode,
output_parser=output_parser,
)
@classmethod
def class_name(cls) -> str:
return "llama_api_llm"
@property
def _model_kwargs(self) -> Dict[str, Any]:
base_kwargs = {
"model": self.model,
"temperature": self.temperature,
"max_length": self.max_tokens,
}
return {
**base_kwargs,
**self.additional_kwargs,
}
@property
def metadata(self) -> LLMMetadata:
return LLMMetadata(
context_window=4096,
num_output=DEFAULT_NUM_OUTPUTS,
is_chat_model=True,
is_function_calling_model=True,
model_name="llama-api",
)
@llm_chat_callback()
def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
message_dicts = to_openai_message_dicts(messages)
json_dict = {
"messages": message_dicts,
**self._model_kwargs,
**kwargs,
}
response = self._client.run(json_dict).json()
message_dict = response["choices"][0]["message"]
message = from_openai_message_dict(message_dict)
return ChatResponse(message=message, raw=response)
@llm_completion_callback()
def complete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponse:
complete_fn = chat_to_completion_decorator(self.chat)
return complete_fn(prompt, **kwargs)
@llm_completion_callback()
def stream_complete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponseGen:
raise NotImplementedError("stream_complete is not supported for LlamaAPI")
@llm_chat_callback()
def stream_chat(
self, messages: Sequence[ChatMessage], **kwargs: Any
) -> ChatResponseGen:
raise NotImplementedError("stream_chat is not supported for LlamaAPI")