faiss_rag_enterprise/llama_index/llms/nvidia_triton_utils.py

344 lines
12 KiB
Python

import abc
import json
import random
import time
from functools import partial
from queue import Queue
from typing import (
TYPE_CHECKING,
Any,
Dict,
List,
Optional,
Type,
Union,
)
import numpy as np
if TYPE_CHECKING:
import tritonclient.grpc as grpcclient
import tritonclient.http as httpclient
STOP_WORDS = ["</s>"]
RANDOM_SEED = 0
class StreamingResponseGenerator(Queue):
"""A Generator that provides the inference results from an LLM."""
def __init__(
self, client: "GrpcTritonClient", request_id: str, force_batch: bool
) -> None:
"""Instantiate the generator class."""
super().__init__()
self._client = client
self.request_id = request_id
self._batch = force_batch
def __iter__(self) -> "StreamingResponseGenerator":
"""Return self as a generator."""
return self
def __next__(self) -> str:
"""Return the next retrieved token."""
val = self.get()
if val is None or val in STOP_WORDS:
self._stop_stream()
raise StopIteration
return val
def _stop_stream(self) -> None:
"""Drain and shutdown the Triton stream."""
self._client.stop_stream(
"tensorrt_llm", self.request_id, signal=not self._batch
)
class _BaseTritonClient(abc.ABC):
"""An abstraction of the connection to a triton inference server."""
def __init__(self, server_url: str) -> None:
"""Initialize the client."""
self._server_url = server_url
self._client = self._inference_server_client(server_url)
@property
@abc.abstractmethod
def _inference_server_client(
self,
) -> Union[
Type["grpcclient.InferenceServerClient"],
Type["httpclient.InferenceServerClient"],
]:
"""Return the preferred InferenceServerClient class."""
@property
@abc.abstractmethod
def _infer_input(
self,
) -> Union[Type["grpcclient.InferInput"], Type["httpclient.InferInput"]]:
"""Return the preferred InferInput."""
@property
@abc.abstractmethod
def _infer_output(
self,
) -> Union[
Type["grpcclient.InferRequestedOutput"], Type["httpclient.InferRequestedOutput"]
]:
"""Return the preferred InferRequestedOutput."""
def load_model(self, model_name: str, timeout: int = 1000) -> None:
"""Load a model into the server."""
if self._client.is_model_ready(model_name):
return
self._client.load_model(model_name)
t0 = time.perf_counter()
t1 = t0
while not self._client.is_model_ready(model_name) and t1 - t0 < timeout:
t1 = time.perf_counter()
if not self._client.is_model_ready(model_name):
raise RuntimeError(f"Failed to load {model_name} on Triton in {timeout}s")
def get_model_list(self) -> List[str]:
"""Get a list of models loaded in the triton server."""
res = self._client.get_model_repository_index(as_json=True)
return [model["name"] for model in res["models"]]
def get_model_concurrency(self, model_name: str, timeout: int = 1000) -> int:
"""Get the model concurrency."""
self.load_model(model_name, timeout)
instances = self._client.get_model_config(model_name, as_json=True)["config"][
"instance_group"
]
return sum(instance["count"] * len(instance["gpus"]) for instance in instances)
def _generate_stop_signals(
self,
) -> List[Union["grpcclient.InferInput", "httpclient.InferInput"]]:
"""Generate the signal to stop the stream."""
inputs = [
self._infer_input("input_ids", [1, 1], "INT32"),
self._infer_input("input_lengths", [1, 1], "INT32"),
self._infer_input("request_output_len", [1, 1], "UINT32"),
self._infer_input("stop", [1, 1], "BOOL"),
]
inputs[0].set_data_from_numpy(np.empty([1, 1], dtype=np.int32))
inputs[1].set_data_from_numpy(np.zeros([1, 1], dtype=np.int32))
inputs[2].set_data_from_numpy(np.array([[0]], dtype=np.uint32))
inputs[3].set_data_from_numpy(np.array([[True]], dtype="bool"))
return inputs
def _generate_outputs(
self,
) -> List[
Union["grpcclient.InferRequestedOutput", "httpclient.InferRequestedOutput"]
]:
"""Generate the expected output structure."""
return [self._infer_output("text_output")]
def _prepare_tensor(
self, name: str, input_data: Any
) -> Union["grpcclient.InferInput", "httpclient.InferInput"]:
"""Prepare an input data structure."""
from tritonclient.utils import np_to_triton_dtype
t = self._infer_input(
name, input_data.shape, np_to_triton_dtype(input_data.dtype)
)
t.set_data_from_numpy(input_data)
return t
def _generate_inputs( # pylint: disable=too-many-arguments,too-many-locals
self,
prompt: str,
tokens: int = 300,
temperature: float = 1.0,
top_k: float = 1,
top_p: float = 0,
beam_width: int = 1,
repetition_penalty: float = 1,
length_penalty: float = 1.0,
stream: bool = True,
) -> List[Union["grpcclient.InferInput", "httpclient.InferInput"]]:
"""Create the input for the triton inference server."""
query = np.array(prompt).astype(object)
request_output_len = np.array([tokens]).astype(np.uint32).reshape((1, -1))
runtime_top_k = np.array([top_k]).astype(np.uint32).reshape((1, -1))
runtime_top_p = np.array([top_p]).astype(np.float32).reshape((1, -1))
temperature_array = np.array([temperature]).astype(np.float32).reshape((1, -1))
len_penalty = np.array([length_penalty]).astype(np.float32).reshape((1, -1))
repetition_penalty_array = (
np.array([repetition_penalty]).astype(np.float32).reshape((1, -1))
)
random_seed = np.array([RANDOM_SEED]).astype(np.uint64).reshape((1, -1))
beam_width_array = np.array([beam_width]).astype(np.uint32).reshape((1, -1))
streaming_data = np.array([[stream]], dtype=bool)
return [
self._prepare_tensor("text_input", query),
self._prepare_tensor("max_tokens", request_output_len),
self._prepare_tensor("top_k", runtime_top_k),
self._prepare_tensor("top_p", runtime_top_p),
self._prepare_tensor("temperature", temperature_array),
self._prepare_tensor("length_penalty", len_penalty),
self._prepare_tensor("repetition_penalty", repetition_penalty_array),
self._prepare_tensor("random_seed", random_seed),
self._prepare_tensor("beam_width", beam_width_array),
self._prepare_tensor("stream", streaming_data),
]
def _trim_batch_response(self, result_str: str) -> str:
"""Trim the resulting response from a batch request by removing provided prompt and extra generated text."""
# extract the generated part of the prompt
split = result_str.split("[/INST]", 1)
generated = split[-1]
end_token = generated.find("</s>")
if end_token == -1:
return generated
return generated[:end_token].strip()
class GrpcTritonClient(_BaseTritonClient):
"""GRPC connection to a triton inference server."""
@property
def _inference_server_client(
self,
) -> Type["grpcclient.InferenceServerClient"]:
"""Return the preferred InferenceServerClient class."""
import tritonclient.grpc as grpcclient
return grpcclient.InferenceServerClient # type: ignore
@property
def _infer_input(self) -> Type["grpcclient.InferInput"]:
"""Return the preferred InferInput."""
import tritonclient.grpc as grpcclient
return grpcclient.InferInput # type: ignore
@property
def _infer_output(
self,
) -> Type["grpcclient.InferRequestedOutput"]:
"""Return the preferred InferRequestedOutput."""
import tritonclient.grpc as grpcclient
return grpcclient.InferRequestedOutput # type: ignore
def _send_stop_signals(self, model_name: str, request_id: str) -> None:
"""Send the stop signal to the Triton Inference server."""
stop_inputs = self._generate_stop_signals()
self._client.async_stream_infer(
model_name,
stop_inputs,
request_id=request_id,
parameters={"Streaming": True},
)
@staticmethod
def _process_result(result: Dict[str, str]) -> str:
"""Post-process the result from the server."""
import google.protobuf.json_format
import tritonclient.grpc as grpcclient
from tritonclient.grpc.service_pb2 import ModelInferResponse
message = ModelInferResponse()
generated_text: str = ""
google.protobuf.json_format.Parse(json.dumps(result), message)
infer_result = grpcclient.InferResult(message)
np_res = infer_result.as_numpy("text_output")
generated_text = ""
if np_res is not None:
generated_text = "".join([token.decode() for token in np_res])
return generated_text
def _stream_callback(
self,
result_queue: Queue,
force_batch: bool,
result: Any,
error: str,
) -> None:
"""Add streamed result to queue."""
if error:
result_queue.put(error)
else:
response_raw = result.get_response(as_json=True)
if "outputs" in response_raw:
# the very last response might have no output, just the final flag
response = self._process_result(response_raw)
if force_batch:
response = self._trim_batch_response(response)
if response in STOP_WORDS:
result_queue.put(None)
else:
result_queue.put(response)
if response_raw["parameters"]["triton_final_response"]["bool_param"]:
# end of the generation
result_queue.put(None)
# pylint: disable-next=too-many-arguments
def _send_prompt_streaming(
self,
model_name: str,
request_inputs: Any,
request_outputs: Optional[Any],
request_id: str,
result_queue: StreamingResponseGenerator,
force_batch: bool = False,
) -> None:
"""Send the prompt and start streaming the result."""
self._client.start_stream(
callback=partial(self._stream_callback, result_queue, force_batch)
)
self._client.async_stream_infer(
model_name=model_name,
inputs=request_inputs,
outputs=request_outputs,
request_id=request_id,
)
def request_streaming(
self,
model_name: str,
request_id: Optional[str] = None,
force_batch: bool = False,
**params: Any,
) -> StreamingResponseGenerator:
"""Request a streaming connection."""
if not self._client.is_model_ready(model_name):
raise RuntimeError("Cannot request streaming, model is not loaded")
if not request_id:
request_id = str(random.randint(1, 9999999)) # nosec
result_queue = StreamingResponseGenerator(self, request_id, force_batch)
inputs = self._generate_inputs(stream=not force_batch, **params)
outputs = self._generate_outputs()
self._send_prompt_streaming(
model_name,
inputs,
outputs,
request_id,
result_queue,
force_batch,
)
return result_queue
def stop_stream(
self, model_name: str, request_id: str, signal: bool = True
) -> None:
"""Close the streaming connection."""
if signal:
self._send_stop_signals(model_name, request_id)
self._client.stop_stream()