faiss_rag_enterprise/llama_index/llms/openai.py

657 lines
23 KiB
Python

from typing import (
Any,
Awaitable,
Callable,
Dict,
List,
Optional,
Protocol,
Sequence,
cast,
runtime_checkable,
)
import httpx
import tiktoken
from openai import AsyncOpenAI, AzureOpenAI
from openai import OpenAI as SyncOpenAI
from openai.types.chat.chat_completion_chunk import (
ChatCompletionChunk,
ChoiceDelta,
ChoiceDeltaToolCall,
)
from llama_index.bridge.pydantic import Field, PrivateAttr
from llama_index.callbacks import CallbackManager
from llama_index.constants import (
DEFAULT_TEMPERATURE,
)
from llama_index.core.llms.types import (
ChatMessage,
ChatResponse,
ChatResponseAsyncGen,
ChatResponseGen,
CompletionResponse,
CompletionResponseAsyncGen,
CompletionResponseGen,
LLMMetadata,
MessageRole,
)
from llama_index.llms.base import (
llm_chat_callback,
llm_completion_callback,
)
from llama_index.llms.generic_utils import (
achat_to_completion_decorator,
acompletion_to_chat_decorator,
astream_chat_to_completion_decorator,
astream_completion_to_chat_decorator,
chat_to_completion_decorator,
completion_to_chat_decorator,
stream_chat_to_completion_decorator,
stream_completion_to_chat_decorator,
)
from llama_index.llms.llm import LLM
from llama_index.llms.openai_utils import (
from_openai_message,
is_chat_model,
is_function_calling_model,
openai_modelname_to_contextsize,
resolve_openai_credentials,
to_openai_message_dicts,
)
from llama_index.types import BaseOutputParser, PydanticProgramMode
DEFAULT_OPENAI_MODEL = "gpt-3.5-turbo"
@runtime_checkable
class Tokenizer(Protocol):
"""Tokenizers support an encode function that returns a list of ints."""
def encode(self, text: str) -> List[int]:
...
class OpenAI(LLM):
model: str = Field(
default=DEFAULT_OPENAI_MODEL, description="The OpenAI model to use."
)
temperature: float = Field(
default=DEFAULT_TEMPERATURE,
description="The temperature to use during generation.",
gte=0.0,
lte=1.0,
)
max_tokens: Optional[int] = Field(
description="The maximum number of tokens to generate.",
gt=0,
)
additional_kwargs: Dict[str, Any] = Field(
default_factory=dict, description="Additional kwargs for the OpenAI API."
)
max_retries: int = Field(
default=3,
description="The maximum number of API retries.",
gte=0,
)
timeout: float = Field(
default=60.0,
description="The timeout, in seconds, for API requests.",
gte=0,
)
default_headers: Dict[str, str] = Field(
default=None, description="The default headers for API requests."
)
reuse_client: bool = Field(
default=True,
description=(
"Reuse the OpenAI client between requests. When doing anything with large "
"volumes of async API calls, setting this to false can improve stability."
),
)
api_key: str = Field(default=None, description="The OpenAI API key.", exclude=True)
api_base: str = Field(description="The base URL for OpenAI API.")
api_version: str = Field(description="The API version for OpenAI API.")
_client: Optional[SyncOpenAI] = PrivateAttr()
_aclient: Optional[AsyncOpenAI] = PrivateAttr()
_http_client: Optional[httpx.Client] = PrivateAttr()
def __init__(
self,
model: str = DEFAULT_OPENAI_MODEL,
temperature: float = DEFAULT_TEMPERATURE,
max_tokens: Optional[int] = None,
additional_kwargs: Optional[Dict[str, Any]] = None,
max_retries: int = 3,
timeout: float = 60.0,
reuse_client: bool = True,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
api_version: Optional[str] = None,
callback_manager: Optional[CallbackManager] = None,
default_headers: Optional[Dict[str, str]] = None,
http_client: Optional[httpx.Client] = None,
# base class
system_prompt: Optional[str] = None,
messages_to_prompt: Optional[Callable[[Sequence[ChatMessage]], str]] = None,
completion_to_prompt: Optional[Callable[[str], str]] = None,
pydantic_program_mode: PydanticProgramMode = PydanticProgramMode.DEFAULT,
output_parser: Optional[BaseOutputParser] = None,
**kwargs: Any,
) -> None:
additional_kwargs = additional_kwargs or {}
api_key, api_base, api_version = resolve_openai_credentials(
api_key=api_key,
api_base=api_base,
api_version=api_version,
)
super().__init__(
model=model,
temperature=temperature,
max_tokens=max_tokens,
additional_kwargs=additional_kwargs,
max_retries=max_retries,
callback_manager=callback_manager,
api_key=api_key,
api_version=api_version,
api_base=api_base,
timeout=timeout,
reuse_client=reuse_client,
default_headers=default_headers,
system_prompt=system_prompt,
messages_to_prompt=messages_to_prompt,
completion_to_prompt=completion_to_prompt,
pydantic_program_mode=pydantic_program_mode,
output_parser=output_parser,
**kwargs,
)
self._client = None
self._aclient = None
self._http_client = http_client
def _get_client(self) -> SyncOpenAI:
if not self.reuse_client:
return SyncOpenAI(**self._get_credential_kwargs())
if self._client is None:
self._client = SyncOpenAI(**self._get_credential_kwargs())
return self._client
def _get_aclient(self) -> AsyncOpenAI:
if not self.reuse_client:
return AsyncOpenAI(**self._get_credential_kwargs())
if self._aclient is None:
self._aclient = AsyncOpenAI(**self._get_credential_kwargs())
return self._aclient
def _get_model_name(self) -> str:
model_name = self.model
if "ft-" in model_name: # legacy fine-tuning
model_name = model_name.split(":")[0]
elif model_name.startswith("ft:"):
model_name = model_name.split(":")[1]
return model_name
def _is_azure_client(self) -> bool:
return isinstance(self._get_client(), AzureOpenAI)
@classmethod
def class_name(cls) -> str:
return "openai_llm"
@property
def _tokenizer(self) -> Optional[Tokenizer]:
"""
Get a tokenizer for this model, or None if a tokenizing method is unknown.
OpenAI can do this using the tiktoken package, subclasses may not have
this convenience.
"""
return tiktoken.encoding_for_model(self._get_model_name())
@property
def metadata(self) -> LLMMetadata:
return LLMMetadata(
context_window=openai_modelname_to_contextsize(self._get_model_name()),
num_output=self.max_tokens or -1,
is_chat_model=is_chat_model(model=self._get_model_name()),
is_function_calling_model=is_function_calling_model(
model=self._get_model_name()
),
model_name=self.model,
)
@llm_chat_callback()
def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
if self._use_chat_completions(kwargs):
chat_fn = self._chat
else:
chat_fn = completion_to_chat_decorator(self._complete)
return chat_fn(messages, **kwargs)
@llm_chat_callback()
def stream_chat(
self, messages: Sequence[ChatMessage], **kwargs: Any
) -> ChatResponseGen:
if self._use_chat_completions(kwargs):
stream_chat_fn = self._stream_chat
else:
stream_chat_fn = stream_completion_to_chat_decorator(self._stream_complete)
return stream_chat_fn(messages, **kwargs)
@llm_completion_callback()
def complete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponse:
if self._use_chat_completions(kwargs):
complete_fn = chat_to_completion_decorator(self._chat)
else:
complete_fn = self._complete
return complete_fn(prompt, **kwargs)
@llm_completion_callback()
def stream_complete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponseGen:
if self._use_chat_completions(kwargs):
stream_complete_fn = stream_chat_to_completion_decorator(self._stream_chat)
else:
stream_complete_fn = self._stream_complete
return stream_complete_fn(prompt, **kwargs)
def _use_chat_completions(self, kwargs: Dict[str, Any]) -> bool:
if "use_chat_completions" in kwargs:
return kwargs["use_chat_completions"]
return self.metadata.is_chat_model
def _get_credential_kwargs(self) -> Dict[str, Any]:
return {
"api_key": self.api_key,
"base_url": self.api_base,
"max_retries": self.max_retries,
"timeout": self.timeout,
"default_headers": self.default_headers,
"http_client": self._http_client,
}
def _get_model_kwargs(self, **kwargs: Any) -> Dict[str, Any]:
base_kwargs = {"model": self.model, "temperature": self.temperature, **kwargs}
if self.max_tokens is not None:
# If max_tokens is None, don't include in the payload:
# https://platform.openai.com/docs/api-reference/chat
# https://platform.openai.com/docs/api-reference/completions
base_kwargs["max_tokens"] = self.max_tokens
return {**base_kwargs, **self.additional_kwargs}
def _chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
client = self._get_client()
message_dicts = to_openai_message_dicts(messages)
response = client.chat.completions.create(
messages=message_dicts,
stream=False,
**self._get_model_kwargs(**kwargs),
)
openai_message = response.choices[0].message
message = from_openai_message(openai_message)
return ChatResponse(
message=message,
raw=response,
additional_kwargs=self._get_response_token_counts(response),
)
def _update_tool_calls(
self,
tool_calls: List[ChoiceDeltaToolCall],
tool_calls_delta: Optional[List[ChoiceDeltaToolCall]],
) -> List[ChoiceDeltaToolCall]:
"""Use the tool_calls_delta objects received from openai stream chunks
to update the running tool_calls object.
Args:
tool_calls (List[ChoiceDeltaToolCall]): the list of tool calls
tool_calls_delta (ChoiceDeltaToolCall): the delta to update tool_calls
Returns:
List[ChoiceDeltaToolCall]: the updated tool calls
"""
# openai provides chunks consisting of tool_call deltas one tool at a time
if tool_calls_delta is None:
return tool_calls
tc_delta = tool_calls_delta[0]
if len(tool_calls) == 0:
tool_calls.append(tc_delta)
else:
# we need to either update latest tool_call or start a
# new tool_call (i.e., multiple tools in this turn) and
# accumulate that new tool_call with future delta chunks
t = tool_calls[-1]
if t.index != tc_delta.index:
# the start of a new tool call, so append to our running tool_calls list
tool_calls.append(tc_delta)
else:
# not the start of a new tool call, so update last item of tool_calls
# validations to get passed by mypy
assert t.function is not None
assert tc_delta.function is not None
assert t.function.arguments is not None
assert t.function.name is not None
assert t.id is not None
t.function.arguments += tc_delta.function.arguments or ""
t.function.name += tc_delta.function.name or ""
t.id += tc_delta.id or ""
return tool_calls
def _stream_chat(
self, messages: Sequence[ChatMessage], **kwargs: Any
) -> ChatResponseGen:
client = self._get_client()
message_dicts = to_openai_message_dicts(messages)
def gen() -> ChatResponseGen:
content = ""
tool_calls: List[ChoiceDeltaToolCall] = []
is_function = False
for response in client.chat.completions.create(
messages=message_dicts,
stream=True,
**self._get_model_kwargs(**kwargs),
):
response = cast(ChatCompletionChunk, response)
if len(response.choices) > 0:
delta = response.choices[0].delta
else:
if self._is_azure_client():
continue
else:
delta = ChoiceDelta()
# check if this chunk is the start of a function call
if delta.tool_calls:
is_function = True
# update using deltas
role = delta.role or MessageRole.ASSISTANT
content_delta = delta.content or ""
content += content_delta
additional_kwargs = {}
if is_function:
tool_calls = self._update_tool_calls(tool_calls, delta.tool_calls)
additional_kwargs["tool_calls"] = tool_calls
yield ChatResponse(
message=ChatMessage(
role=role,
content=content,
additional_kwargs=additional_kwargs,
),
delta=content_delta,
raw=response,
additional_kwargs=self._get_response_token_counts(response),
)
return gen()
def _complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
client = self._get_client()
all_kwargs = self._get_model_kwargs(**kwargs)
self._update_max_tokens(all_kwargs, prompt)
response = client.completions.create(
prompt=prompt,
stream=False,
**all_kwargs,
)
text = response.choices[0].text
return CompletionResponse(
text=text,
raw=response,
additional_kwargs=self._get_response_token_counts(response),
)
def _stream_complete(self, prompt: str, **kwargs: Any) -> CompletionResponseGen:
client = self._get_client()
all_kwargs = self._get_model_kwargs(**kwargs)
self._update_max_tokens(all_kwargs, prompt)
def gen() -> CompletionResponseGen:
text = ""
for response in client.completions.create(
prompt=prompt,
stream=True,
**all_kwargs,
):
if len(response.choices) > 0:
delta = response.choices[0].text
else:
delta = ""
text += delta
yield CompletionResponse(
delta=delta,
text=text,
raw=response,
additional_kwargs=self._get_response_token_counts(response),
)
return gen()
def _update_max_tokens(self, all_kwargs: Dict[str, Any], prompt: str) -> None:
"""Infer max_tokens for the payload, if possible."""
if self.max_tokens is not None or self._tokenizer is None:
return
# NOTE: non-chat completion endpoint requires max_tokens to be set
num_tokens = len(self._tokenizer.encode(prompt))
max_tokens = self.metadata.context_window - num_tokens
if max_tokens <= 0:
raise ValueError(
f"The prompt has {num_tokens} tokens, which is too long for"
" the model. Please use a prompt that fits within"
f" {self.metadata.context_window} tokens."
)
all_kwargs["max_tokens"] = max_tokens
def _get_response_token_counts(self, raw_response: Any) -> dict:
"""Get the token usage reported by the response."""
if not isinstance(raw_response, dict):
return {}
usage = raw_response.get("usage", {})
# NOTE: other model providers that use the OpenAI client may not report usage
if usage is None:
return {}
return {
"prompt_tokens": usage.get("prompt_tokens", 0),
"completion_tokens": usage.get("completion_tokens", 0),
"total_tokens": usage.get("total_tokens", 0),
}
# ===== Async Endpoints =====
@llm_chat_callback()
async def achat(
self,
messages: Sequence[ChatMessage],
**kwargs: Any,
) -> ChatResponse:
achat_fn: Callable[..., Awaitable[ChatResponse]]
if self._use_chat_completions(kwargs):
achat_fn = self._achat
else:
achat_fn = acompletion_to_chat_decorator(self._acomplete)
return await achat_fn(messages, **kwargs)
@llm_chat_callback()
async def astream_chat(
self,
messages: Sequence[ChatMessage],
**kwargs: Any,
) -> ChatResponseAsyncGen:
astream_chat_fn: Callable[..., Awaitable[ChatResponseAsyncGen]]
if self._use_chat_completions(kwargs):
astream_chat_fn = self._astream_chat
else:
astream_chat_fn = astream_completion_to_chat_decorator(
self._astream_complete
)
return await astream_chat_fn(messages, **kwargs)
@llm_completion_callback()
async def acomplete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponse:
if self._use_chat_completions(kwargs):
acomplete_fn = achat_to_completion_decorator(self._achat)
else:
acomplete_fn = self._acomplete
return await acomplete_fn(prompt, **kwargs)
@llm_completion_callback()
async def astream_complete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponseAsyncGen:
if self._use_chat_completions(kwargs):
astream_complete_fn = astream_chat_to_completion_decorator(
self._astream_chat
)
else:
astream_complete_fn = self._astream_complete
return await astream_complete_fn(prompt, **kwargs)
async def _achat(
self, messages: Sequence[ChatMessage], **kwargs: Any
) -> ChatResponse:
aclient = self._get_aclient()
message_dicts = to_openai_message_dicts(messages)
response = await aclient.chat.completions.create(
messages=message_dicts, stream=False, **self._get_model_kwargs(**kwargs)
)
message_dict = response.choices[0].message
message = from_openai_message(message_dict)
return ChatResponse(
message=message,
raw=response,
additional_kwargs=self._get_response_token_counts(response),
)
async def _astream_chat(
self, messages: Sequence[ChatMessage], **kwargs: Any
) -> ChatResponseAsyncGen:
aclient = self._get_aclient()
message_dicts = to_openai_message_dicts(messages)
async def gen() -> ChatResponseAsyncGen:
content = ""
tool_calls: List[ChoiceDeltaToolCall] = []
is_function = False
first_chat_chunk = True
async for response in await aclient.chat.completions.create(
messages=message_dicts,
stream=True,
**self._get_model_kwargs(**kwargs),
):
response = cast(ChatCompletionChunk, response)
if len(response.choices) > 0:
# check if the first chunk has neither content nor tool_calls
# this happens when 1106 models end up calling multiple tools
if (
first_chat_chunk
and response.choices[0].delta.content is None
and response.choices[0].delta.tool_calls is None
):
first_chat_chunk = False
continue
delta = response.choices[0].delta
else:
if self._is_azure_client():
continue
else:
delta = ChoiceDelta()
first_chat_chunk = False
# check if this chunk is the start of a function call
if delta.tool_calls:
is_function = True
# update using deltas
role = delta.role or MessageRole.ASSISTANT
content_delta = delta.content or ""
content += content_delta
additional_kwargs = {}
if is_function:
tool_calls = self._update_tool_calls(tool_calls, delta.tool_calls)
additional_kwargs["tool_calls"] = tool_calls
yield ChatResponse(
message=ChatMessage(
role=role,
content=content,
additional_kwargs=additional_kwargs,
),
delta=content_delta,
raw=response,
additional_kwargs=self._get_response_token_counts(response),
)
return gen()
async def _acomplete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
aclient = self._get_aclient()
all_kwargs = self._get_model_kwargs(**kwargs)
self._update_max_tokens(all_kwargs, prompt)
response = await aclient.completions.create(
prompt=prompt,
stream=False,
**all_kwargs,
)
text = response.choices[0].text
return CompletionResponse(
text=text,
raw=response,
additional_kwargs=self._get_response_token_counts(response),
)
async def _astream_complete(
self, prompt: str, **kwargs: Any
) -> CompletionResponseAsyncGen:
aclient = self._get_aclient()
all_kwargs = self._get_model_kwargs(**kwargs)
self._update_max_tokens(all_kwargs, prompt)
async def gen() -> CompletionResponseAsyncGen:
text = ""
async for response in await aclient.completions.create(
prompt=prompt,
stream=True,
**all_kwargs,
):
if len(response.choices) > 0:
delta = response.choices[0].text
else:
delta = ""
text += delta
yield CompletionResponse(
delta=delta,
text=text,
raw=response,
additional_kwargs=self._get_response_token_counts(response),
)
return gen()