faiss_rag_enterprise/llama_index/llms/palm.py

144 lines
4.5 KiB
Python

"""Palm API."""
import os
from typing import Any, Callable, Optional, Sequence
from llama_index.bridge.pydantic import Field, PrivateAttr
from llama_index.callbacks import CallbackManager
from llama_index.constants import DEFAULT_NUM_OUTPUTS
from llama_index.core.llms.types import (
ChatMessage,
CompletionResponse,
CompletionResponseGen,
LLMMetadata,
)
from llama_index.llms.base import llm_completion_callback
from llama_index.llms.custom import CustomLLM
from llama_index.types import BaseOutputParser, PydanticProgramMode
DEFAULT_PALM_MODEL = "models/text-bison-001"
class PaLM(CustomLLM):
"""PaLM LLM."""
model_name: str = Field(
default=DEFAULT_PALM_MODEL, description="The PaLM model to use."
)
num_output: int = Field(
default=DEFAULT_NUM_OUTPUTS,
description="The number of tokens to generate.",
gt=0,
)
generate_kwargs: dict = Field(
default_factory=dict, description="Kwargs for generation."
)
_model: Any = PrivateAttr()
def __init__(
self,
api_key: Optional[str] = None,
model_name: Optional[str] = DEFAULT_PALM_MODEL,
num_output: Optional[int] = None,
callback_manager: Optional[CallbackManager] = None,
system_prompt: Optional[str] = None,
messages_to_prompt: Optional[Callable[[Sequence[ChatMessage]], str]] = None,
completion_to_prompt: Optional[Callable[[str], str]] = None,
pydantic_program_mode: PydanticProgramMode = PydanticProgramMode.DEFAULT,
output_parser: Optional[BaseOutputParser] = None,
**generate_kwargs: Any,
) -> None:
"""Initialize params."""
try:
import google.generativeai as palm
except ImportError:
raise ValueError(
"PaLM is not installed. "
"Please install it with `pip install google-generativeai`."
)
api_key = api_key or os.environ.get("PALM_API_KEY")
palm.configure(api_key=api_key)
models = palm.list_models()
models_dict = {m.name: m for m in models}
if model_name not in models_dict:
raise ValueError(
f"Model name {model_name} not found in {models_dict.keys()}"
)
model_name = model_name
self._model = models_dict[model_name]
# get num_output
num_output = num_output or self._model.output_token_limit
generate_kwargs = generate_kwargs or {}
super().__init__(
model_name=model_name,
num_output=num_output,
generate_kwargs=generate_kwargs,
callback_manager=callback_manager,
system_prompt=system_prompt,
messages_to_prompt=messages_to_prompt,
completion_to_prompt=completion_to_prompt,
pydantic_program_mode=pydantic_program_mode,
output_parser=output_parser,
)
@classmethod
def class_name(cls) -> str:
return "PaLM_llm"
@property
def metadata(self) -> LLMMetadata:
"""Get LLM metadata."""
# TODO: google palm actually separates input and output token limits
total_tokens = self._model.input_token_limit + self.num_output
return LLMMetadata(
context_window=total_tokens,
num_output=self.num_output,
model_name=self.model_name,
)
@llm_completion_callback()
def complete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponse:
"""Predict the answer to a query.
Args:
prompt (str): Prompt to use for prediction.
Returns:
Tuple[str, str]: Tuple of the predicted answer and the formatted prompt.
"""
import google.generativeai as palm
completion = palm.generate_text(
model=self.model_name,
prompt=prompt,
**kwargs,
)
return CompletionResponse(text=completion.result, raw=completion.candidates[0])
@llm_completion_callback()
def stream_complete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponseGen:
"""Stream the answer to a query.
NOTE: this is a beta feature. Will try to build or use
better abstractions about response handling.
Args:
prompt (str): Prompt to use for prediction.
Returns:
str: The predicted answer.
"""
raise NotImplementedError(
"PaLM does not support streaming completion in LlamaIndex currently."
)