faiss_rag_enterprise/llama_index/llms/perplexity.py

397 lines
15 KiB
Python

import json
from typing import Any, Callable, Dict, Optional, Sequence
import httpx
import requests
from llama_index.bridge.pydantic import Field
from llama_index.callbacks import CallbackManager
from llama_index.core.llms.types import (
ChatMessage,
ChatResponse,
ChatResponseAsyncGen,
ChatResponseGen,
CompletionResponse,
CompletionResponseAsyncGen,
CompletionResponseGen,
LLMMetadata,
)
from llama_index.llms.base import llm_chat_callback, llm_completion_callback
from llama_index.llms.llm import LLM
from llama_index.types import BaseOutputParser, PydanticProgramMode
class Perplexity(LLM):
model: str = Field(description="The Perplexity model to use.")
temperature: float = Field(description="The temperature to use during generation.")
max_tokens: Optional[int] = Field(
default=None,
description="The maximum number of tokens to generate.",
)
context_window: Optional[int] = Field(
default=None,
description="The context window to use during generation.",
)
api_key: str = Field(
default=None, description="The Perplexity API key.", exclude=True
)
api_base: str = Field(
default="https://api.perplexity.ai",
description="The base URL for Perplexity API.",
)
additional_kwargs: Dict[str, Any] = Field(
default_factory=dict, description="Additional kwargs for the Perplexity API."
)
max_retries: int = Field(
default=10, description="The maximum number of API retries."
)
headers: Dict[str, str] = Field(
default_factory=dict, description="Headers for API requests."
)
def __init__(
self,
model: str = "mistral-7b-instruct",
temperature: float = 0.1,
max_tokens: Optional[int] = None,
api_key: Optional[str] = None,
api_base: Optional[str] = "https://api.perplexity.ai",
additional_kwargs: Optional[Dict[str, Any]] = None,
max_retries: int = 10,
context_window: Optional[int] = None,
callback_manager: Optional[CallbackManager] = None,
system_prompt: Optional[str] = None,
messages_to_prompt: Optional[Callable[[Sequence[ChatMessage]], str]] = None,
completion_to_prompt: Optional[Callable[[str], str]] = None,
pydantic_program_mode: PydanticProgramMode = PydanticProgramMode.DEFAULT,
output_parser: Optional[BaseOutputParser] = None,
**kwargs: Any,
) -> None:
additional_kwargs = additional_kwargs or {}
headers = {
"accept": "application/json",
"content-type": "application/json",
"authorization": f"Bearer {api_key}",
}
super().__init__(
model=model,
temperature=temperature,
max_tokens=max_tokens,
additional_kwargs=additional_kwargs,
max_retries=max_retries,
callback_manager=callback_manager,
api_key=api_key,
api_base=api_base,
headers=headers,
context_window=context_window,
system_prompt=system_prompt,
messages_to_prompt=messages_to_prompt,
completion_to_prompt=completion_to_prompt,
pydantic_program_mode=pydantic_program_mode,
output_parser=output_parser,
**kwargs,
)
@classmethod
def class_name(cls) -> str:
return "perplexity_llm"
@property
def metadata(self) -> LLMMetadata:
return LLMMetadata(
context_window=self.context_window
if self.context_window is not None
else self._get_context_window(),
num_output=self.max_tokens
or -1, # You can replace this with the appropriate value
is_chat_model=self._is_chat_model(),
model_name=self.model,
)
def _get_context_window(self) -> int:
model_context_windows = {
"codellama-34b-instruct": 16384,
"llama-2-70b-chat": 4096,
"mistral-7b-instruct": 4096,
"mixtral-8x7b-instruct": 4096,
"pplx-7b-chat": 8192,
"pplx-70b-chat": 4096,
"pplx-7b-online": 4096,
"pplx-70b-online": 4096,
}
return model_context_windows.get(
self.model, 4096
) # Default to 4096 if model not found
def _is_chat_model(self) -> bool:
chat_models = {
"codellama-34b-instruct",
"llama-2-70b-chat",
"mistral-7b-instruct",
"mixtral-8x7b-instruct",
"pplx-7b-chat",
"pplx-70b-chat",
"pplx-7b-online",
"pplx-70b-online",
}
return self.model in chat_models
def _get_all_kwargs(self, **kwargs: Any) -> Dict[str, Any]:
"""Get all data for the request as a dictionary."""
base_kwargs = {
"model": self.model,
"temperature": self.temperature,
}
if self.max_tokens is not None:
base_kwargs["max_tokens"] = self.max_tokens
return {**base_kwargs, **self.additional_kwargs, **kwargs}
def _complete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
url = f"{self.api_base}/chat/completions"
payload = {
"model": self.model,
"messages": [
{"role": "system", "content": self.system_prompt},
{
"role": "user",
"content": prompt,
},
],
**self._get_all_kwargs(**kwargs),
}
response = requests.post(url, json=payload, headers=self.headers)
response.raise_for_status()
data = response.json()
return CompletionResponse(text=data["choices"][0]["message"], raw=data)
@llm_completion_callback()
def complete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponse:
if self._is_chat_model():
raise ValueError("The complete method is not supported for chat models.")
return self._complete(prompt, **kwargs)
def _chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
url = f"{self.api_base}/chat/completions"
payload = {
"model": self.model,
"messages": [
message.dict(exclude={"additional_kwargs"}) for message in messages
],
**self._get_all_kwargs(**kwargs),
}
response = requests.post(url, json=payload, headers=self.headers)
response.raise_for_status()
data = response.json()
message = ChatMessage(
role="assistant", content=data["choices"][0]["message"]["content"]
)
return ChatResponse(message=message, raw=data)
@llm_chat_callback()
def chat(self, messages: Sequence[ChatMessage], **kwargs: Any) -> ChatResponse:
return self._chat(messages, **kwargs)
async def _acomplete(self, prompt: str, **kwargs: Any) -> CompletionResponse:
url = f"{self.api_base}/chat/completions"
payload = {
"model": self.model,
"prompt": prompt,
**self._get_all_kwargs(**kwargs),
}
async with httpx.AsyncClient() as client:
response = await client.post(url, json=payload, headers=self.headers)
response.raise_for_status()
data = response.json()
return CompletionResponse(text=data["choices"][0]["text"], raw=data)
@llm_completion_callback()
async def acomplete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponse:
if self._is_chat_model():
raise ValueError("The complete method is not supported for chat models.")
return await self._acomplete(prompt, **kwargs)
async def _achat(
self, messages: Sequence[ChatMessage], **kwargs: Any
) -> ChatResponse:
url = f"{self.api_base}/chat/completions"
payload = {
"model": self.model,
"messages": [
message.dict(exclude={"additional_kwargs"}) for message in messages
],
**self._get_all_kwargs(**kwargs),
}
async with httpx.AsyncClient() as client:
response = await client.post(url, json=payload, headers=self.headers)
response.raise_for_status()
data = response.json()
message = ChatMessage(
role="assistant", content=data["choices"][0]["message"]["content"]
)
return ChatResponse(message=message, raw=data)
@llm_chat_callback()
async def achat(
self, messages: Sequence[ChatMessage], **kwargs: Any
) -> ChatResponse:
return await self._achat(messages, **kwargs)
def _stream_complete(self, prompt: str, **kwargs: Any) -> CompletionResponseGen:
url = f"{self.api_base}/chat/completions"
payload = {
"model": self.model,
"prompt": prompt,
"stream": True,
**self._get_all_kwargs(**kwargs),
}
def gen() -> CompletionResponseGen:
with requests.Session() as session:
with session.post(
url, json=payload, headers=self.headers, stream=True
) as response:
response.raise_for_status()
text = ""
for line in response.iter_lines(
decode_unicode=True
): # decode lines to Unicode
if line.startswith("data:"):
data = json.loads(line[5:])
delta = data["choices"][0]["text"]
text += delta
yield CompletionResponse(delta=delta, text=text, raw=data)
return gen()
@llm_completion_callback()
def stream_complete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponseGen:
if self._is_chat_model():
raise ValueError("The complete method is not supported for chat models.")
stream_complete_fn = self._stream_complete
return stream_complete_fn(prompt, **kwargs)
async def _astream_complete(
self, prompt: str, **kwargs: Any
) -> CompletionResponseAsyncGen:
import aiohttp
url = f"{self.api_base}/chat/completions"
payload = {
"model": self.model,
"prompt": prompt,
"stream": True,
**self._get_all_kwargs(**kwargs),
}
async def gen() -> CompletionResponseAsyncGen:
async with aiohttp.ClientSession() as session:
async with session.post(
url, json=payload, headers=self.headers
) as response:
response.raise_for_status()
text = ""
async for line in response.content:
line_text = line.decode("utf-8").strip()
if line_text.startswith("data:"):
data = json.loads(line_text[5:])
delta = data["choices"][0]["text"]
text += delta
yield CompletionResponse(delta=delta, text=text, raw=data)
return gen()
@llm_completion_callback()
async def astream_complete(
self, prompt: str, formatted: bool = False, **kwargs: Any
) -> CompletionResponseAsyncGen:
if self._is_chat_model():
raise ValueError("The complete method is not supported for chat models.")
return await self._astream_complete(prompt, **kwargs)
def _stream_chat(
self, messages: Sequence[ChatMessage], **kwargs: Any
) -> ChatResponseGen:
url = f"{self.api_base}/chat/completions"
payload = {
"model": self.model,
"messages": [
message.dict(exclude={"additional_kwargs"}) for message in messages
],
"stream": True,
**self._get_all_kwargs(**kwargs),
}
def gen() -> ChatResponseGen:
content = ""
with requests.Session() as session:
with session.post(
url, json=payload, headers=self.headers, stream=True
) as response:
response.raise_for_status()
for line in response.iter_lines(
decode_unicode=True
): # decode lines to Unicode
if line.startswith("data:"):
data = json.loads(line[5:])
delta = data["choices"][0]["delta"]["content"]
content += delta
message = ChatMessage(
role="assistant", content=content, raw=data
)
yield ChatResponse(message=message, delta=delta, raw=data)
return gen()
@llm_chat_callback()
def stream_chat(
self, messages: Sequence[ChatMessage], **kwargs: Any
) -> ChatResponseGen:
return self._stream_chat(messages, **kwargs)
async def _astream_chat(
self, messages: Sequence[ChatMessage], **kwargs: Any
) -> ChatResponseAsyncGen:
import aiohttp
url = f"{self.api_base}/chat/completions"
payload = {
"model": self.model,
"messages": [
message.dict(exclude={"additional_kwargs"}) for message in messages
],
"stream": True,
**self._get_all_kwargs(**kwargs),
}
async def gen() -> ChatResponseAsyncGen:
async with aiohttp.ClientSession() as session:
async with session.post(
url, json=payload, headers=self.headers
) as response:
response.raise_for_status()
content = ""
async for line in response.content:
line_text = line.decode("utf-8").strip()
if line_text.startswith("data:"):
data = json.loads(line_text[5:])
delta = data["choices"][0]["delta"]["content"]
content += delta
message = ChatMessage(
role="assistant", content=content, raw=data
)
yield ChatResponse(message=message, delta=delta, raw=data)
return gen()
@llm_chat_callback()
async def astream_chat(
self, messages: Sequence[ChatMessage], **kwargs: Any
) -> ChatResponseAsyncGen:
return await self._astream_chat(messages, **kwargs)