104 lines
2.8 KiB
Python
104 lines
2.8 KiB
Python
"""Guardrails output parser.
|
|
|
|
See https://github.com/ShreyaR/guardrails.
|
|
|
|
"""
|
|
from deprecated import deprecated
|
|
|
|
from llama_index.output_parsers.base import ChainableOutputParser
|
|
|
|
try:
|
|
from guardrails import Guard
|
|
except ImportError:
|
|
Guard = None
|
|
PromptCallable = None
|
|
|
|
from copy import deepcopy
|
|
from typing import TYPE_CHECKING, Any, Callable, Optional
|
|
|
|
if TYPE_CHECKING:
|
|
from llama_index.bridge.langchain import BaseLLM
|
|
|
|
|
|
def get_callable(llm: Optional["BaseLLM"]) -> Optional[Callable]:
|
|
"""Get callable."""
|
|
if llm is None:
|
|
return None
|
|
|
|
return llm.__call__
|
|
|
|
|
|
class GuardrailsOutputParser(ChainableOutputParser):
|
|
"""Guardrails output parser."""
|
|
|
|
def __init__(
|
|
self,
|
|
guard: Guard,
|
|
llm: Optional["BaseLLM"] = None,
|
|
format_key: Optional[str] = None,
|
|
):
|
|
"""Initialize a Guardrails output parser."""
|
|
self.guard: Guard = guard
|
|
self.llm = llm
|
|
self.format_key = format_key
|
|
|
|
@classmethod
|
|
@deprecated(version="0.8.46")
|
|
def from_rail(
|
|
cls, rail: str, llm: Optional["BaseLLM"] = None
|
|
) -> "GuardrailsOutputParser":
|
|
"""From rail."""
|
|
if Guard is None:
|
|
raise ImportError(
|
|
"Guardrails is not installed. Run `pip install guardrails-ai`. "
|
|
)
|
|
|
|
return cls(Guard.from_rail(rail), llm=llm)
|
|
|
|
@classmethod
|
|
@deprecated(version="0.8.46")
|
|
def from_rail_string(
|
|
cls, rail_string: str, llm: Optional["BaseLLM"] = None
|
|
) -> "GuardrailsOutputParser":
|
|
"""From rail string."""
|
|
if Guard is None:
|
|
raise ImportError(
|
|
"Guardrails is not installed. Run `pip install guardrails-ai`. "
|
|
)
|
|
|
|
return cls(Guard.from_rail_string(rail_string), llm=llm)
|
|
|
|
def parse(
|
|
self,
|
|
output: str,
|
|
llm: Optional["BaseLLM"] = None,
|
|
num_reasks: Optional[int] = 1,
|
|
*args: Any,
|
|
**kwargs: Any
|
|
) -> Any:
|
|
"""Parse, validate, and correct errors programmatically."""
|
|
llm = llm or self.llm
|
|
llm_fn = get_callable(llm)
|
|
|
|
return self.guard.parse(
|
|
output, llm_api=llm_fn, num_reasks=num_reasks, *args, **kwargs
|
|
)
|
|
|
|
def format(self, query: str) -> str:
|
|
"""Format a query with structured output formatting instructions."""
|
|
output_schema_text = deepcopy(self.guard.rail.prompt)
|
|
|
|
# Add format instructions here.
|
|
format_instructions_tmpl = self.guard.raw_prompt.format_instructions
|
|
# NOTE: output_schema is fixed
|
|
format_instructions = format_instructions_tmpl.format(
|
|
output_schema=output_schema_text
|
|
)
|
|
|
|
if self.format_key is not None:
|
|
fmt_query = query.format(**{self.format_key: format_instructions})
|
|
else:
|
|
fmt_query = query + "\n\n" + format_instructions
|
|
|
|
return fmt_query
|