150 lines
4.6 KiB
Python
150 lines
4.6 KiB
Python
"""Prompts from evaporate repo.
|
|
|
|
|
|
Full credits go to: https://github.com/HazyResearch/evaporate
|
|
|
|
|
|
"""
|
|
|
|
from llama_index.prompts import PromptTemplate
|
|
|
|
# deprecated, kept for backward compatibility
|
|
|
|
"""Pandas PromptTemplate. Convert query to python code.
|
|
|
|
Required template variables: `chunk`, `topic`.
|
|
|
|
Args:
|
|
template (str): Template for the PromptTemplate.
|
|
**prompt_kwargs: Keyword arguments for the PromptTemplate.
|
|
|
|
"""
|
|
SchemaIDPrompt = PromptTemplate
|
|
|
|
"""Function generation PromptTemplate. Generate a function from existing text.
|
|
|
|
Required template variables: `context_str`, `query_str`,
|
|
`attribute`, `function_field`.
|
|
|
|
Args:
|
|
template (str): Template for the PromptTemplate.
|
|
**prompt_kwargs: Keyword arguments for the PromptTemplate.
|
|
|
|
"""
|
|
FnGeneratePrompt = PromptTemplate
|
|
|
|
# used for schema identification
|
|
SCHEMA_ID_PROMPT_TMPL = f"""Sample text:
|
|
<tr class="mergedrow"><th scope="row" class="infobox-label"><div style="text-indent:-0.9em;margin-left:1.2em;font-weight:normal;">• <a href="/wiki/Monarchy_of_Canada" title="Monarchy of Canada">Monarch</a> </div></th><td class="infobox-data"><a href="/wiki/Charles_III" title="Charles III">Charles III</a></td></tr>
|
|
<tr class="mergedrow"><th scope="row" class="infobox-label"><div style="text-indent:-0.9em;margin-left:1.2em;font-weight:normal;">• <span class="nowrap"><a href="/wiki/Governor_General_of_Canada" title="Governor General of Canada">Governor General</a></span> </div></th><td class="infobox-data"><a href="/wiki/Mary_Simon" title="Mary Simon">Mary Simon</a></td></tr>
|
|
<b>Provinces and Territories</b class='navlinking countries'>
|
|
<ul>
|
|
<li>Saskatchewan</li>
|
|
<li>Manitoba</li>
|
|
<li>Ontario</li>
|
|
<li>Quebec</li>
|
|
<li>New Brunswick</li>
|
|
<li>Prince Edward Island</li>
|
|
<li>Nova Scotia</li>
|
|
<li>Newfoundland and Labrador</li>
|
|
<li>Yukon</li>
|
|
<li>Nunavut</li>
|
|
<li>Northwest Territories</li>
|
|
</ul>
|
|
|
|
Question: List all relevant attributes about 'Canada' that are exactly mentioned in this sample text if any.
|
|
Answer:
|
|
- Monarch: Charles III
|
|
- Governor General: Mary Simon
|
|
- Provinces and Territories: Saskatchewan, Manitoba, Ontario, Quebec, New Brunswick, Prince Edward Island, Nova Scotia, Newfoundland and Labrador, Yukon, Nunavut, Northwest Territories
|
|
|
|
----
|
|
|
|
Sample text:
|
|
Patient birth date: 1990-01-01
|
|
Prescribed medication: aspirin, ibuprofen, acetaminophen
|
|
Prescribed dosage: 1 tablet, 2 tablets, 3 tablets
|
|
Doctor's name: Dr. Burns
|
|
Date of discharge: 2020-01-01
|
|
Hospital address: 123 Main Street, New York, NY 10001
|
|
|
|
Question: List all relevant attributes about 'medications' that are exactly mentioned in this sample text if any.
|
|
Answer:
|
|
- Prescribed medication: aspirin, ibuprofen, acetaminophen
|
|
- Prescribed dosage: 1 tablet, 2 tablets, 3 tablets
|
|
|
|
----
|
|
|
|
Sample text:
|
|
{{chunk:}}
|
|
|
|
Question: List all relevant attributes about '{{topic:}}' that are exactly mentioned in this sample text if any.
|
|
Answer:"""
|
|
|
|
SCHEMA_ID_PROMPT = PromptTemplate(SCHEMA_ID_PROMPT_TMPL)
|
|
|
|
|
|
# used for function generation
|
|
|
|
FN_GENERATION_PROMPT_TMPL = f"""Here is a sample of text:
|
|
|
|
{{context_str:}}
|
|
|
|
|
|
Question: {{query_str:}}
|
|
|
|
Given the function signature, write Python code to extract the
|
|
"{{attribute:}}" field from the text.
|
|
Return the result as a single value (string, int, float), and not a list.
|
|
Make sure there is a return statement in the code. Do not leave out a return statement.
|
|
{{expected_output_str:}}
|
|
|
|
import re
|
|
|
|
def get_{{function_field:}}_field(text: str):
|
|
\"""
|
|
Function to extract the "{{attribute:}} field", and return the result
|
|
as a single value.
|
|
\"""
|
|
"""
|
|
|
|
FN_GENERATION_PROMPT = PromptTemplate(FN_GENERATION_PROMPT_TMPL)
|
|
|
|
|
|
FN_GENERATION_LIST_PROMPT_TMPL = f"""Here is a sample of text:
|
|
|
|
{{context_str:}}
|
|
|
|
|
|
Question: {{query_str:}}
|
|
|
|
Given the function signature, write Python code to extract the
|
|
"{{attribute:}}" field from the text.
|
|
Return the result as a list of values (if there is just one item, return a single \
|
|
element list).
|
|
Make sure there is a return statement in the code. Do not leave out a return statement.
|
|
{{expected_output_str:}}
|
|
|
|
import re
|
|
|
|
def get_{{function_field:}}_field(text: str) -> List:
|
|
\"""
|
|
Function to extract the "{{attribute:}} field", and return the result
|
|
as a single value.
|
|
\"""
|
|
"""
|
|
|
|
FN_GENERATION_LIST_PROMPT = PromptTemplate(FN_GENERATION_LIST_PROMPT_TMPL)
|
|
|
|
DEFAULT_EXPECTED_OUTPUT_PREFIX_TMPL = (
|
|
"Here is the expected output on the text after running the function. "
|
|
"Please do not write a function that would return a different output. "
|
|
"Expected output: "
|
|
)
|
|
|
|
|
|
DEFAULT_FIELD_EXTRACT_QUERY_TMPL = (
|
|
'Write a python function to extract the entire "{field}" field from text, '
|
|
"but not any other metadata. Return the result as a list."
|
|
)
|