faiss_rag_enterprise/llama_index/readers/metal.py

70 lines
2.2 KiB
Python

from typing import Any, Dict, List, Optional
from llama_index.readers.base import BaseReader
from llama_index.schema import Document
class MetalReader(BaseReader):
"""Metal reader.
Args:
api_key (str): Metal API key.
client_id (str): Metal client ID.
index_id (str): Metal index ID.
"""
def __init__(self, api_key: str, client_id: str, index_id: str):
import_err_msg = (
"`metal_sdk` package not found, please run `pip install metal_sdk`"
)
try:
import metal_sdk # noqa
except ImportError:
raise ImportError(import_err_msg)
from metal_sdk.metal import Metal
"""Initialize with parameters."""
self._api_key = api_key
self._client_id = client_id
self._index_id = index_id
self.metal_client = Metal(api_key, client_id, index_id)
def load_data(
self,
limit: int,
query_embedding: Optional[List[float]] = None,
filters: Optional[Dict[str, Any]] = None,
separate_documents: bool = True,
**query_kwargs: Any
) -> List[Document]:
"""Load data from Metal.
Args:
query_embedding (Optional[List[float]]): Query embedding for search.
limit (int): Number of results to return.
filters (Optional[Dict[str, Any]]): Filters to apply to the search.
separate_documents (Optional[bool]): Whether to return separate
documents per retrieved entry. Defaults to True.
**query_kwargs: Keyword arguments to pass to the search.
Returns:
List[Document]: A list of documents.
"""
payload = {
"embedding": query_embedding,
"filters": filters,
}
response = self.metal_client.search(payload, limit=limit, **query_kwargs)
documents = []
for item in response["data"]:
text = item["text"] or (item["metadata"] and item["metadata"]["text"])
documents.append(Document(text=text))
if not separate_documents:
text_list = [doc.get_content() for doc in documents]
text = "\n\n".join(text_list)
documents = [Document(text=text)]
return documents