64 lines
2.5 KiB
Python
64 lines
2.5 KiB
Python
from fastapi import APIRouter, HTTPException, Query
|
||
from pydantic import BaseModel
|
||
from app.core.embedding import embedder
|
||
from app.core.config import settings
|
||
from llama_index.vector_stores.faiss import FaissVectorStore
|
||
from llama_index import VectorStoreIndex, ServiceContext
|
||
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
||
import os
|
||
import logging
|
||
|
||
router = APIRouter()
|
||
|
||
# 设置日志记录器
|
||
logging.basicConfig(level=logging.INFO)
|
||
logger = logging.getLogger(__name__)
|
||
|
||
class QueryRequest(BaseModel):
|
||
query: str
|
||
|
||
@router.post("/search")
|
||
def search_docs(request: QueryRequest, user_id: str = Query(..., description="用户ID")):
|
||
try:
|
||
logger.info(f"Received search request from user: {user_id} with query: {request.query}")
|
||
|
||
# 修正后的索引路径,使用用户ID并且不带 ".index" 后缀
|
||
index_path = os.path.join("index_data", user_id) # 仅使用 user_id 作为文件夹名
|
||
logger.info(f"Looking for index at path: {index_path}")
|
||
|
||
# 检查索引是否存在
|
||
if not os.path.exists(index_path):
|
||
logger.error(f"Index not found for user: {user_id} at {index_path}")
|
||
raise HTTPException(status_code=404, detail="用户索引不存在")
|
||
|
||
# 构建 LlamaIndex 检索器
|
||
logger.info(f"Loading Faiss vector store from path: {index_path}")
|
||
faiss_store = FaissVectorStore.from_persist_path(index_path)
|
||
service_context = ServiceContext.from_defaults(embed_model=embedder)
|
||
logger.info("Service context created successfully.")
|
||
|
||
index = VectorStoreIndex.from_vector_store(faiss_store, service_context=service_context)
|
||
logger.info("VectorStoreIndex created successfully.")
|
||
|
||
# 检索结果(真实文本)
|
||
retriever = index.as_retriever(similarity_top_k=settings.TOP_K)
|
||
logger.info(f"Retrieving top {settings.TOP_K} results for query: {request.query}")
|
||
nodes = retriever.retrieve(request.query)
|
||
|
||
# 返回检索结果
|
||
result = {
|
||
"user_id": user_id,
|
||
"query": request.query,
|
||
"results": [
|
||
{"score": float(node.score or 0), "text": node.get_content()}
|
||
for node in nodes
|
||
]
|
||
}
|
||
|
||
logger.info(f"Search results for user {user_id}: {result}")
|
||
return result
|
||
|
||
except Exception as e:
|
||
logger.error(f"Error processing search request: {e}", exc_info=True)
|
||
raise HTTPException(status_code=500, detail=str(e))
|