faiss_rag_enterprise/app/api/search.py

42 lines
1.5 KiB
Python

from fastapi import APIRouter, HTTPException, Query
from pydantic import BaseModel
from app.core.embedding import embedder
from app.core.config import settings
from llama_index.vector_stores.faiss import FaissVectorStore
from llama_index import VectorStoreIndex, ServiceContext
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
import os
router = APIRouter()
class QueryRequest(BaseModel):
query: str
@router.post("/search")
def search_docs(request: QueryRequest, user_id: str = Query(..., description="用户ID")):
try:
index_path = os.path.join("index_data", f"{user_id}.index")
if not os.path.exists(index_path):
raise HTTPException(status_code=404, detail="用户索引不存在")
# 构建 LlamaIndex 检索器
faiss_store = FaissVectorStore.from_persist_path(index_path)
service_context = ServiceContext.from_defaults(embed_model=embedder)
index = VectorStoreIndex.from_vector_store(faiss_store, service_context=service_context)
# 检索结果(真实文本)
retriever = index.as_retriever(similarity_top_k=settings.TOP_K)
nodes = retriever.retrieve(request.query)
return {
"user_id": user_id,
"query": request.query,
"results": [
{"score": float(node.score or 0), "text": node.get_content()}
for node in nodes
]
}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))