# Sampling Parameters This doc describes the sampling parameters of the SGLang Runtime. It is the low-level endpoint of the runtime. If you want a high-level endpoint that can automatically handle chat templates, consider using the [OpenAI Compatible API](./openai_api_completions.ipynb). ## `/generate` Endpoint The `/generate` endpoint accepts the following parameters in JSON format. For in detail usage see the [native api doc](./native_api.ipynb). * `text: Optional[Union[List[str], str]] = None` The input prompt. Can be a single prompt or a batch of prompts. * `input_ids: Optional[Union[List[List[int]], List[int]]] = None` Alternative to `text`. Specify the input as token IDs instead of text. * `sampling_params: Optional[Union[List[Dict], Dict]] = None` The sampling parameters as described in the sections below. * `return_logprob: Optional[Union[List[bool], bool]] = None` Whether to return log probabilities for tokens. * `logprob_start_len: Optional[Union[List[int], int]] = None` If returning log probabilities, specifies the start position in the prompt. Default is "-1" which returns logprobs only for output tokens. * `top_logprobs_num: Optional[Union[List[int], int]] = None` If returning log probabilities, specifies the number of top logprobs to return at each position. * `stream: bool = False` Whether to stream the output. * `lora_path: Optional[Union[List[Optional[str]], Optional[str]]] = None` Path to LoRA weights. * `custom_logit_processor: Optional[Union[List[Optional[str]], str]] = None` Custom logit processor for advanced sampling control. For usage see below. * `return_hidden_states: bool = False` Whether to return hidden states of the model. Note that each time it changes, the cuda graph will be recaptured, which might lead to a performance hit. See the [examples](https://github.com/sgl-project/sglang/blob/main/examples/runtime/hidden_states) for more information. ## Sampling params ### Core Parameters * `max_new_tokens: int = 128` The maximum output length measured in tokens. * `stop: Optional[Union[str, List[str]]] = None` One or multiple [stop words](https://platform.openai.com/docs/api-reference/chat/create#chat-create-stop). Generation will stop if one of these words is sampled. * `stop_token_ids: Optional[List[int]] = None` Provide stop words in form of token ids. Generation will stop if one of these token ids is sampled. * `temperature: float = 1.0` [Temperature](https://platform.openai.com/docs/api-reference/chat/create#chat-create-temperature) when sampling the next token. `temperature = 0` corresponds to greedy sampling, higher temperature leads to more diversity. * `top_p: float = 1.0` [Top-p](https://platform.openai.com/docs/api-reference/chat/create#chat-create-top_p) selects tokens from the smallest sorted set whose cumulative probability exceeds `top_p`. When `top_p = 1`, this reduces to unrestricted sampling from all tokens. * `top_k: int = -1` [Top-k](https://developer.nvidia.com/blog/how-to-get-better-outputs-from-your-large-language-model/#predictability_vs_creativity) randomly selects from the `k` highest-probability tokens. * `min_p: float = 0.0` [Min-p](https://github.com/huggingface/transformers/issues/27670) samples from tokens with probability larger than `min_p * highest_token_probability`. ### Penalizers * `frequency_penalty: float = 0.0`: Penalizes tokens based on their frequency in generation so far. Must be between `-2` and `2` where negative numbers encourage repeatment of tokens and positive number encourages sampling of new tokens. The scaling of penalization grows linearly with each appearance of a token. * `presence_penalty: float = 0.0`: Penalizes tokens if they appeared in the generation so far. Must be between `-2` and `2` where negative numbers encourage repeatment of tokens and positive number encourages sampling of new tokens. The scaling of the penalization is constant if a token occured. * `repetition_penalty: float = 0.0`: Penalizes tokens if they appeared in prompt or generation so far. Must be between `0` and `2` where numbers smaller than `1` encourage repeatment of tokens and numbers larger than `1` encourages sampling of new tokens. The penalization scales multiplicatively. * `min_new_tokens: int = 0`: Forces the model to generate at least `min_new_tokens` until a stop word or EOS token is sampled. Note that this might lead to unintended behavior for example if the distribution is highly skewed towards these tokens. ### Constrained decoding Please refer to our dedicated guide on [constrained decoding](./structured_outputs.ipynb) for the following parameters. * `json_schema: Optional[str] = None`: JSON schema for structured outputs. * `regex: Optional[str] = None`: Regex for structured outputs. * `ebnf: Optional[str] = None`: EBNF for structured outputs. ### Other options * `n: int = 1`: Specifies the number of output sequences to generate per request. (Generating multiple outputs in one request (n > 1) is discouraged; repeat the same prompts for several times offer better control and efficiency.) * `spaces_between_special_tokens: bool = True`: Whether or not to add spaces between special tokens during detokenization. * `no_stop_trim: bool = False`: Don't trim stop words or EOS token from the generated text. * `ignore_eos: bool = False`: Don't stop generation when EOS token is sampled. * `skip_special_tokens: bool = True`: Remove special tokens during decoding. * `custom_params: Optional[List[Optional[Dict[str, Any]]]] = None`: Used when employing `CustomLogitProcessor`. For usage see below. ## Examples ### Normal Launch a server: ``` python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 ``` Send a request: ```python import requests response = requests.post( "http://localhost:30000/generate", json={ "text": "The capital of France is", "sampling_params": { "temperature": 0, "max_new_tokens": 32, }, }, ) print(response.json()) ``` Detailed example in [send request](./send_request.ipynb). ### Streaming Send a request and stream the output: ```python import requests, json response = requests.post( "http://localhost:30000/generate", json={ "text": "The capital of France is", "sampling_params": { "temperature": 0, "max_new_tokens": 32, }, "stream": True, }, stream=True, ) prev = 0 for chunk in response.iter_lines(decode_unicode=False): chunk = chunk.decode("utf-8") if chunk and chunk.startswith("data:"): if chunk == "data: [DONE]": break data = json.loads(chunk[5:].strip("\n")) output = data["text"].strip() print(output[prev:], end="", flush=True) prev = len(output) print("") ``` Detailed example in [openai compatible api](https://docs.sglang.ai/backend/openai_api_completions.html#id2). ### Multi modal Launch a server: ``` python3 -m sglang.launch_server --model-path lmms-lab/llava-onevision-qwen2-7b-ov --chat-template chatml-llava ``` Download an image: ``` curl -o example_image.png -L https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true ``` Send a request: ```python import requests response = requests.post( "http://localhost:30000/generate", json={ "text": "<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n" "<|im_start|>user\n\nDescribe this image in a very short sentence.<|im_end|>\n" "<|im_start|>assistant\n", "image_data": "example_image.png", "sampling_params": { "temperature": 0, "max_new_tokens": 32, }, }, ) print(response.json()) ``` The `image_data` can be a file name, a URL, or a base64 encoded string. See also `python/sglang/srt/utils.py:load_image`. Streaming is supported in a similar manner as [above](#streaming). Detailed example in [openai api vision](./openai_api_vision.ipynb). ### Structured Outputs (JSON, Regex, EBNF) You can specify a JSON schema, regular expression or [EBNF](https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form) to constrain the model output. The model output will be guaranteed to follow the given constraints. Only one constraint parameter (`json_schema`, `regex`, or `ebnf`) can be specified for a request. SGLang supports two grammar backends: - [Outlines](https://github.com/dottxt-ai/outlines) (default): Supports JSON schema and regular expression constraints. - [XGrammar](https://github.com/mlc-ai/xgrammar): Supports JSON schema, regular expression, and EBNF constraints. - XGrammar currently uses the [GGML BNF format](https://github.com/ggerganov/llama.cpp/blob/master/grammars/README.md) Initialize the XGrammar backend using `--grammar-backend xgrammar` flag ```bash python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3.1-8B-Instruct \ --port 30000 --host 0.0.0.0 --grammar-backend [xgrammar|outlines] # xgrammar or outlines (default: outlines) ``` ```python import json import requests json_schema = json.dumps({ "type": "object", "properties": { "name": {"type": "string", "pattern": "^[\\w]+$"}, "population": {"type": "integer"}, }, "required": ["name", "population"], }) # JSON (works with both Outlines and XGrammar) response = requests.post( "http://localhost:30000/generate", json={ "text": "Here is the information of the capital of France in the JSON format.\n", "sampling_params": { "temperature": 0, "max_new_tokens": 64, "json_schema": json_schema, }, }, ) print(response.json()) # Regular expression (Outlines backend only) response = requests.post( "http://localhost:30000/generate", json={ "text": "Paris is the capital of", "sampling_params": { "temperature": 0, "max_new_tokens": 64, "regex": "(France|England)", }, }, ) print(response.json()) # EBNF (XGrammar backend only) response = requests.post( "http://localhost:30000/generate", json={ "text": "Write a greeting.", "sampling_params": { "temperature": 0, "max_new_tokens": 64, "ebnf": 'root ::= "Hello" | "Hi" | "Hey"', }, }, ) print(response.json()) ``` Detailed example in [structured outputs](./structured_outputs.ipynb). ### Custom Logit Processor Launch a server with `--enable-custom-logit-processor` flag on. ``` python -m sglang.launch_server --model-path meta-llama/Meta-Llama-3-8B-Instruct --port 30000 --enable-custom-logit-processor ``` Define a custom logit processor that will always sample a specific token id. ```python from sglang.srt.sampling.custom_logit_processor import CustomLogitProcessor class DeterministicLogitProcessor(CustomLogitProcessor): """A dummy logit processor that changes the logits to always sample the given token id. """ def __call__(self, logits, custom_param_list): # Check that the number of logits matches the number of custom parameters assert logits.shape[0] == len(custom_param_list) key = "token_id" for i, param_dict in enumerate(custom_param_list): # Mask all other tokens logits[i, :] = -float("inf") # Assign highest probability to the specified token logits[i, param_dict[key]] = 0.0 return logits ``` Send a request ```python import requests response = requests.post( "http://localhost:30000/generate", json={ "text": "The capital of France is", "custom_logit_processor": DeterministicLogitProcessor().to_str(), "sampling_params": { "temperature": 0.0, "max_new_tokens": 32, "custom_params": {"token_id": 5}, }, }, ) print(response.json()) ```