import argparse import asyncio import json import os import time from concurrent.futures import ThreadPoolExecutor import numpy as np import pandas as pd import tiktoken from tqdm import tqdm from sglang.test.test_utils import add_common_other_args_and_parse, get_call_generate choices = ["A", "B", "C", "D"] tokenizer = tiktoken.encoding_for_model("gpt-3.5-turbo") def format_subject(subject): l = subject.split("_") s = "" for entry in l: s += " " + entry return s def format_example(df, idx, include_answer=True): prompt = df.iloc[idx, 0] k = df.shape[1] - 2 for j in range(k): prompt += "\n{}. {}".format(choices[j], df.iloc[idx, j + 1]) prompt += "\nAnswer:" if include_answer: prompt += " {}\n\n".format(df.iloc[idx, k + 1]) return prompt def gen_prompt(train_df, subject, k=-1): prompt = "The following are multiple choice questions (with answers) about{}.\n\n".format( format_subject(subject) ) if k == -1: k = train_df.shape[0] for i in range(k): prompt += format_example(train_df, i) return prompt def evaluate(args, subject, dev_df, test_df, call_generate): prompts = [] labels = [] # Construct prompts k = args.ntrain train_prompt = gen_prompt(dev_df, subject, k) while len(tokenizer.encode(train_prompt)) > 1536: k -= 1 train_prompt = gen_prompt(dev_df, subject, k) for i in range(test_df.shape[0]): prompt_end = format_example(test_df, i, include_answer=False) prompt = train_prompt + prompt_end prompts.append(prompt) label = test_df.iloc[i, test_df.shape[1] - 1] labels.append(label) preds = [None] * len(prompts) max_tokens = 1 # Run requests if args.backend != "lmql": # Use thread pool def get_one_answer(i): pred = call_generate(prompts[i], temperature=0, max_tokens=max_tokens) preds[i] = pred.strip()[0] tic = time.time() if args.parallel == 1: for i in range(len(prompts)): get_one_answer(i) else: with ThreadPoolExecutor(args.parallel) as executor: executor.map(get_one_answer, list(range(len(prompts)))) else: # Use asyncio async def batched_call(batch_size): for i in range(0, len(prompts), batch_size): tasks = [] for p in prompts[i : i + batch_size]: tasks.append(call_generate(p, temperature=0, max_tokens=max_tokens)) rets = await asyncio.gather(*tasks) for j in range(len(rets)): preds[i + j] = rets[j].strip()[0] tic = time.time() asyncio.run(batched_call(batch_size=args.parallel)) latency = time.time() - tic # Compute accuracy cors = [pred == label for pred, label in zip(preds, labels)] acc = np.mean(cors) cors = np.array(cors) print( "Average accuracy {:.3f}, latency {:.2f}, #q: {} - {}".format( acc, latency, len(prompts), subject ) ) return cors, acc, latency def main(args): subjects = sorted( [ f.split("_test.csv")[0] for f in os.listdir(os.path.join(args.data_dir, "test")) if "_test.csv" in f ] ) all_cors = [] all_latencies = [] num_requests = 0 # Select backend call_generate = get_call_generate(args) for subject in tqdm(subjects[: args.nsub]): dev_df = pd.read_csv( os.path.join(args.data_dir, "dev", subject + "_dev.csv"), header=None )[: args.ntrain] test_df = pd.read_csv( os.path.join(args.data_dir, "test", subject + "_test.csv"), header=None ) cors, acc, latency = evaluate(args, subject, dev_df, test_df, call_generate) all_cors.append(cors) all_latencies.append(latency) num_requests += len(test_df) total_latency = np.sum(all_latencies) print("Total latency: {:.3f}".format(total_latency)) weighted_acc = np.mean(np.concatenate(all_cors)) print("Average accuracy: {:.3f}".format(weighted_acc)) # Write results with open(args.result_file, "a") as fout: value = { "task": "mmlu", "backend": args.backend, "num_gpus": 1, "latency": round(total_latency, 3), "accuracy": round(weighted_acc, 3), "num_requests": num_requests, "other": { "nsub": args.nsub, "parallel": args.parallel, }, } fout.write(json.dumps(value) + "\n") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--ntrain", type=int, default=5) parser.add_argument("--data_dir", type=str, default="data") parser.add_argument("--nsub", type=int, default=60) args = add_common_other_args_and_parse(parser) main(args)