115 lines
3.1 KiB
Python
115 lines
3.1 KiB
Python
import argparse
|
|
import json
|
|
import time
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from functools import partial
|
|
|
|
from tqdm import tqdm
|
|
|
|
from sglang.test.test_utils import add_common_other_args_and_parse, get_call_generate
|
|
from sglang.utils import dump_state_text, read_jsonl
|
|
|
|
USER_PREFIX = "[INST] "
|
|
USER_SUFFIX = " [/INST]"
|
|
ASSISTANT_PREFIX = ""
|
|
ASSISTANT_SUFFIX = " </s><s>"
|
|
|
|
|
|
def multi_document_qa(docs, question, generate):
|
|
s = USER_PREFIX
|
|
s += "Pleaes answer a question according to given documents.\n"
|
|
s += "Question:" + question + "Documents begin.\n"
|
|
|
|
s += "".join(docs)
|
|
|
|
s += "\nDocuments end."
|
|
s += (
|
|
"\n\nBased on the above documents, please answer this question:\n"
|
|
+ question
|
|
+ "\nAnswer in three words or fewer."
|
|
)
|
|
s += USER_SUFFIX
|
|
s += ASSISTANT_PREFIX
|
|
answer = generate(s, max_tokens=16, stop=None)
|
|
return answer
|
|
|
|
|
|
def main(args):
|
|
lines = read_jsonl(args.data_path)
|
|
l = lines[0]
|
|
arguments = []
|
|
labels = []
|
|
|
|
num_docs = 10
|
|
if args.backend == "guidance":
|
|
num_docs = 7 # due to OOM
|
|
|
|
for i in range(len(l["questions"][: args.num_questions])):
|
|
arguments.append(
|
|
{
|
|
"docs": l["documents"][:num_docs],
|
|
"question": l["questions"][i],
|
|
}
|
|
)
|
|
labels.append(l["answers"][i])
|
|
states = [None] * len(arguments)
|
|
|
|
# Select backend
|
|
call_generate = partial(get_call_generate(args), temperature=0)
|
|
|
|
# Run requests
|
|
def get_one_answer(i):
|
|
states[i] = multi_document_qa(generate=call_generate, **arguments[i])
|
|
|
|
tic = time.time()
|
|
if args.parallel == 1:
|
|
for i in tqdm(range(len(labels))):
|
|
get_one_answer(i)
|
|
else:
|
|
with ThreadPoolExecutor(args.parallel) as executor:
|
|
list(
|
|
tqdm(
|
|
executor.map(get_one_answer, list(range(len(labels)))),
|
|
total=len(labels),
|
|
)
|
|
)
|
|
|
|
latency = time.time() - tic
|
|
|
|
# Compute accuracy
|
|
print(states)
|
|
correct = 0
|
|
for s, label in zip(states, labels):
|
|
answer = s.lower()
|
|
if all(x in answer for x in label.lower().split(" ")):
|
|
correct += 1
|
|
accuracy = correct / len(labels)
|
|
print(f"Accuracy: {accuracy:.3f}")
|
|
print(f"Latency: {latency:.3f}")
|
|
|
|
# Write results
|
|
dump_state_text(f"tmp_output_{args.backend}.txt", states)
|
|
|
|
with open(args.result_file, "a") as fout:
|
|
value = {
|
|
"task": "multi_document_qa",
|
|
"backend": args.backend,
|
|
"num_gpus": 1,
|
|
"latency": round(latency, 3),
|
|
"num_requests": args.num_questions,
|
|
"accuracy": accuracy,
|
|
"other": {
|
|
"num_questions": args.num_questions,
|
|
"parallel": args.parallel,
|
|
},
|
|
}
|
|
fout.write(json.dumps(value) + "\n")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--data-path", type=str, default="questions.jsonl")
|
|
parser.add_argument("--num-questions", type=int, default=100)
|
|
args = add_common_other_args_and_parse(parser)
|
|
main(args)
|