inference/sglang/docs/backend/openai_api_vision.ipynb

292 lines
10 KiB
Plaintext
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# OpenAI APIs - Vision\n",
"\n",
"SGLang provides OpenAI-compatible APIs to enable a smooth transition from OpenAI services to self-hosted local models.\n",
"A complete reference for the API is available in the [OpenAI API Reference](https://platform.openai.com/docs/guides/vision).\n",
"This tutorial covers the vision APIs for vision language models.\n",
"\n",
"SGLang supports various vision language models such as Llama 3.2, LLaVA-OneVision, Qwen2.5-VL, Gemma3 and [more](https://docs.sglang.ai/references/supported_models): \n",
"- [meta-llama/Llama-3.2-11B-Vision-Instruct](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct) \n",
"- [lmms-lab/llava-onevision-qwen2-72b-ov-chat](https://huggingface.co/lmms-lab/llava-onevision-qwen2-72b-ov-chat) \n",
"- [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct)\n",
"- [google/gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it)\n",
"- [openbmb/MiniCPM-V](https://huggingface.co/openbmb/MiniCPM-V)\n",
"- [deepseek-ai/deepseek-vl2](https://huggingface.co/deepseek-ai/deepseek-vl2)\n",
"\n",
"As an alternative to the OpenAI API, you can also use the [SGLang offline engine](https://github.com/sgl-project/sglang/blob/main/examples/runtime/engine/offline_batch_inference_vlm.py)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Launch A Server\n",
"\n",
"Launch the server in your terminal and wait for it to initialize.\n",
"\n",
"**Remember to add** `--chat-template llama_3_vision` **to specify the [vision chat template](https://docs.sglang.ai/backend/openai_api_vision.html#Chat-Template), otherwise, the server will only support text (images wont be passed in), which can lead to degraded performance.**\n",
"\n",
"We need to specify `--chat-template` for vision language models because the chat template provided in Hugging Face tokenizer only supports text."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sglang.test.test_utils import is_in_ci\n",
"\n",
"if is_in_ci():\n",
" from patch import launch_server_cmd\n",
"else:\n",
" from sglang.utils import launch_server_cmd\n",
"\n",
"from sglang.utils import wait_for_server, print_highlight, terminate_process\n",
"\n",
"vision_process, port = launch_server_cmd(\n",
" \"\"\"\n",
"python3 -m sglang.launch_server --model-path meta-llama/Llama-3.2-11B-Vision-Instruct \\\n",
" --chat-template=llama_3_vision\n",
"\"\"\"\n",
")\n",
"\n",
"wait_for_server(f\"http://localhost:{port}\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Using cURL\n",
"\n",
"Once the server is up, you can send test requests using curl or requests."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import subprocess\n",
"\n",
"curl_command = f\"\"\"\n",
"curl -s http://localhost:{port}/v1/chat/completions \\\\\n",
" -d '{{\n",
" \"model\": \"meta-llama/Llama-3.2-11B-Vision-Instruct\",\n",
" \"messages\": [\n",
" {{\n",
" \"role\": \"user\",\n",
" \"content\": [\n",
" {{\n",
" \"type\": \"text\",\n",
" \"text\": \"Whats in this image?\"\n",
" }},\n",
" {{\n",
" \"type\": \"image_url\",\n",
" \"image_url\": {{\n",
" \"url\": \"https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true\"\n",
" }}\n",
" }}\n",
" ]\n",
" }}\n",
" ],\n",
" \"max_tokens\": 300\n",
" }}'\n",
"\"\"\"\n",
"\n",
"response = subprocess.check_output(curl_command, shell=True).decode()\n",
"print_highlight(response)\n",
"\n",
"\n",
"response = subprocess.check_output(curl_command, shell=True).decode()\n",
"print_highlight(response)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Using Python Requests"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import requests\n",
"\n",
"url = f\"http://localhost:{port}/v1/chat/completions\"\n",
"\n",
"data = {\n",
" \"model\": \"meta-llama/Llama-3.2-11B-Vision-Instruct\",\n",
" \"messages\": [\n",
" {\n",
" \"role\": \"user\",\n",
" \"content\": [\n",
" {\"type\": \"text\", \"text\": \"Whats in this image?\"},\n",
" {\n",
" \"type\": \"image_url\",\n",
" \"image_url\": {\n",
" \"url\": \"https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true\"\n",
" },\n",
" },\n",
" ],\n",
" }\n",
" ],\n",
" \"max_tokens\": 300,\n",
"}\n",
"\n",
"response = requests.post(url, json=data)\n",
"print_highlight(response.text)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Using OpenAI Python Client"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from openai import OpenAI\n",
"\n",
"client = OpenAI(base_url=f\"http://localhost:{port}/v1\", api_key=\"None\")\n",
"\n",
"response = client.chat.completions.create(\n",
" model=\"meta-llama/Llama-3.2-11B-Vision-Instruct\",\n",
" messages=[\n",
" {\n",
" \"role\": \"user\",\n",
" \"content\": [\n",
" {\n",
" \"type\": \"text\",\n",
" \"text\": \"What is in this image?\",\n",
" },\n",
" {\n",
" \"type\": \"image_url\",\n",
" \"image_url\": {\n",
" \"url\": \"https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true\"\n",
" },\n",
" },\n",
" ],\n",
" }\n",
" ],\n",
" max_tokens=300,\n",
")\n",
"\n",
"print_highlight(response.choices[0].message.content)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Multiple-Image Inputs\n",
"\n",
"The server also supports multiple images and interleaved text and images if the model supports it."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from openai import OpenAI\n",
"\n",
"client = OpenAI(base_url=f\"http://localhost:{port}/v1\", api_key=\"None\")\n",
"\n",
"response = client.chat.completions.create(\n",
" model=\"meta-llama/Llama-3.2-11B-Vision-Instruct\",\n",
" messages=[\n",
" {\n",
" \"role\": \"user\",\n",
" \"content\": [\n",
" {\n",
" \"type\": \"image_url\",\n",
" \"image_url\": {\n",
" \"url\": \"https://github.com/sgl-project/sglang/blob/main/test/lang/example_image.png?raw=true\",\n",
" },\n",
" },\n",
" {\n",
" \"type\": \"image_url\",\n",
" \"image_url\": {\n",
" \"url\": \"https://raw.githubusercontent.com/sgl-project/sglang/main/assets/logo.png\",\n",
" },\n",
" },\n",
" {\n",
" \"type\": \"text\",\n",
" \"text\": \"I have two very different images. They are not related at all. \"\n",
" \"Please describe the first image in one sentence, and then describe the second image in another sentence.\",\n",
" },\n",
" ],\n",
" }\n",
" ],\n",
" temperature=0,\n",
")\n",
"\n",
"print_highlight(response.choices[0].message.content)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"terminate_process(vision_process)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Chat Template\n",
"\n",
"As mentioned before, if you do not specify a vision model's `--chat-template`, the server uses Hugging Face's default template, which only supports text.\n",
"\n",
"We list popular vision models with their chat templates:\n",
"\n",
"- [meta-llama/Llama-3.2-Vision](https://huggingface.co/meta-llama/Llama-3.2-11B-Vision-Instruct) uses `llama_3_vision`.\n",
"- [Qwen/Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) uses `qwen2-vl`.\n",
"- [google/gemma-3-4b-it](https://huggingface.co/google/gemma-3-4b-it) uses `gemma-it`.\n",
"- [openbmb/MiniCPM-V](https://huggingface.co/openbmb/MiniCPM-V) uses `minicpmv`.\n",
"- [deepseek-ai/deepseek-vl2](https://huggingface.co/deepseek-ai/deepseek-vl2) uses `deepseek-vl2`.\n",
"- [LlaVA-OneVision](https://huggingface.co/lmms-lab/llava-onevision-qwen2-7b-ov) uses `chatml-llava`.\n",
"- [LLaVA-NeXT](https://huggingface.co/collections/lmms-lab/llava-next-6623288e2d61edba3ddbf5ff) uses `chatml-llava`.\n",
"- [Llama3-LLaVA-NeXT](https://huggingface.co/lmms-lab/llama3-llava-next-8b) uses `llava_llama_3`.\n",
"- [LLaVA-v1.5 / 1.6](https://huggingface.co/liuhaotian/llava-v1.6-34b) uses `vicuna_v1.1`."
]
}
],
"metadata": {
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}