inference/sglang/sgl-kernel/tests/speculative/test_speculative_sampling.py

123 lines
3.8 KiB
Python

import torch
import torch.nn.functional as F
from sgl_kernel import tree_speculative_sampling_target_only
def test_tree_speculative_sampling_target_only(threshold_single=1, threshold_acc=1):
print(
f"\n============= run test: {threshold_single=} {threshold_acc=} ==============\n"
)
candidates = torch.tensor(
[
[0, 1, 2, 3, 4, 5],
[7, 8, 9, 10, 11, 12],
],
dtype=torch.int32,
device="cuda",
)
retrive_index = torch.tensor(
[
[0, 1, 2, 3, 4, 5],
[6, 7, 8, 9, 10, 11],
],
dtype=torch.int32,
device="cuda",
)
retrive_next_token = torch.tensor(
[
[1, 2, -1, 4, 5, -1],
[4, 2, 3, -1, 5, -1],
],
dtype=torch.int32,
device="cuda",
)
retrive_next_sibling = torch.tensor(
[
[-1, 3, -1, -1, -1, -1],
[-1, -1, -1, -1, 1, -1],
],
dtype=torch.int32,
device="cuda",
)
target_logits = torch.full((2, 6, 20), 1, dtype=torch.float32, device="cuda")
target_logits[0, 0, 3] = 10
target_logits[0, 3, 4] = 10
target_logits[0, 4, 5] = 10
target_logits[1, 0, 11] = 10
target_logits[1, 4, 12] = 10
for i in range(target_logits.shape[0]):
for j in range(target_logits.shape[1]):
if torch.max(target_logits[i][j]) < 10:
target_logits[i][j][18] = 10
temperatures = torch.tensor([0.01, 0.01], dtype=torch.float32, device="cuda")
predict_shape = (12,)
bs = candidates.shape[0]
num_spec_step = 4
num_draft_tokens = candidates.shape[1]
predicts = torch.full(
predict_shape, -1, dtype=torch.int32, device="cuda"
) # mutable
accept_index = torch.full(
(bs, num_spec_step), -1, dtype=torch.int32, device="cuda"
) # mutable
accept_token_num = torch.full((bs,), 0, dtype=torch.int32, device="cuda") # mutable
expanded_temperature = temperatures.unsqueeze(1).unsqueeze(1)
target_probs = F.softmax(target_logits / expanded_temperature, dim=-1)
draft_probs = torch.full_like(target_probs, 0, dtype=torch.float32, device="cuda")
coins = torch.rand(bs, num_draft_tokens, device="cuda").to(torch.float32)
print(f"{candidates=}")
print(f"{retrive_index=}")
print(f"{retrive_next_token=}")
print(f"{retrive_next_sibling=}")
print(f"{coins=}")
tree_speculative_sampling_target_only(
predicts=predicts,
accept_index=accept_index,
accept_token_num=accept_token_num,
candidates=candidates,
retrive_index=retrive_index,
retrive_next_token=retrive_next_token,
retrive_next_sibling=retrive_next_sibling,
uniform_samples=coins,
target_probs=target_probs,
draft_probs=draft_probs,
threshold_single=threshold_single,
threshold_acc=threshold_acc,
deterministic=True,
)
print(f"{predicts=}")
print(f"{accept_index=}")
print(f"{accept_token_num=}")
return predicts, accept_index, accept_token_num
if __name__ == "__main__":
predicts, accept_index, accept_token_num = (
test_tree_speculative_sampling_target_only(threshold_single=1, threshold_acc=1)
)
assert predicts.tolist() == [3, -1, -1, 4, 5, 18, 11, -1, -1, -1, 12, 18]
assert accept_index.tolist() == [
[0, 3, 4, 5],
[6, 10, 11, -1],
]
assert accept_token_num.tolist() == [3, 2]
predicts, accept_index, accept_token_num = (
test_tree_speculative_sampling_target_only(threshold_single=0, threshold_acc=0)
)
assert predicts.tolist() == [1, 2, 18, -1, -1, -1, 11, -1, -1, -1, 12, 18]
assert accept_index.tolist() == [
[0, 1, 2, -1],
[6, 10, 11, -1],
]
assert accept_token_num.tolist() == [2, 2]