inference/sglang/sgl-kernel/tests/test_trt_allreduce.py

245 lines
8.3 KiB
Python

import ctypes
import logging
import random
import socket
import time
import unittest
from typing import Any, List, Optional
import ray
import sgl_kernel.allreduce as custom_ops
import torch
import torch.distributed as dist
from torch.distributed import ProcessGroup
from vllm import _custom_ops as vllm_ops
from sglang.srt.distributed.device_communicators.cuda_wrapper import CudaRTLibrary
logger = logging.getLogger(__name__)
def get_open_port() -> int:
# try ipv4
try:
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
s.bind(("127.0.0.1", 0))
return s.getsockname()[1]
except OSError:
# try ipv6
with socket.socket(socket.AF_INET6, socket.SOCK_STREAM) as s:
s.bind(("127.0.0.1", 0))
return s.getsockname()[1]
def multi_process_parallel(
world_size: int,
cls: Any,
test_target: Any,
) -> None:
# Using ray helps debugging the error when it failed
# as compared to multiprocessing.
# NOTE: We need to set working_dir for distributed tests,
# otherwise we may get import errors on ray workers
ray.init(log_to_driver=True)
distributed_init_port = get_open_port()
refs = []
for rank in range(world_size):
refs.append(test_target.remote(cls, world_size, rank, distributed_init_port))
ray.get(refs)
ray.shutdown()
class TestCustomAllReduce(unittest.TestCase):
@classmethod
def setUpClass(cls):
random.seed(42)
cls.test_sizes = [512, 4096, 32768, 262144, 524288, 1048576, 2097152]
cls.world_sizes = [2, 4, 8]
@staticmethod
def create_shared_buffer(
size_in_bytes: int, group: Optional[ProcessGroup] = None
) -> List[int]:
"""
Creates a shared buffer and returns a list of pointers
representing the buffer on all processes in the group.
"""
lib = CudaRTLibrary()
pointer = lib.cudaMalloc(size_in_bytes)
handle = lib.cudaIpcGetMemHandle(pointer)
world_size = dist.get_world_size(group=group)
rank = dist.get_rank(group=group)
handles = [None] * world_size
dist.all_gather_object(handles, handle, group=group)
pointers: List[int] = []
for i, h in enumerate(handles):
if i == rank:
pointers.append(pointer.value) # type: ignore
else:
pointers.append(lib.cudaIpcOpenMemHandle(h).value) # type: ignore
return pointers
@staticmethod
def free_shared_buffer(
pointers: List[int], group: Optional[ProcessGroup] = None
) -> None:
rank = dist.get_rank(group=group)
lib = CudaRTLibrary()
lib.cudaFree(ctypes.c_void_p(pointers[rank]))
def test_correctness(self):
for world_size in self.world_sizes:
if world_size > torch.cuda.device_count():
continue
multi_process_parallel(world_size, self, self.correctness)
def test_performance(self):
for world_size in self.world_sizes:
if world_size > torch.cuda.device_count():
continue
multi_process_parallel(world_size, self, self.performance)
def init_custom_allreduce(self, rank, world_size, group):
buffer_max_size = 8 * 1024 * 1024
barrier_max_size = 8 * (24 + 2) * 8
self.buffer_ptrs = self.create_shared_buffer(buffer_max_size, group=group)
self.tmp_result_buffer_ptrs = self.create_shared_buffer(
buffer_max_size, group=group
)
self.barrier_in_ptrs = self.create_shared_buffer(barrier_max_size, group=group)
self.barrier_out_ptrs = self.create_shared_buffer(barrier_max_size, group=group)
self.rank_data = torch.empty(
8 * 1024 * 1024, dtype=torch.uint8, device=torch.device("cuda:0")
)
self.custom_ptr = custom_ops.init_custom_reduce(
rank,
world_size,
self.rank_data,
self.buffer_ptrs,
self.tmp_result_buffer_ptrs,
self.barrier_in_ptrs,
self.barrier_out_ptrs,
)
def custom_allreduce(self, inp, out):
custom_ops.custom_reduce(self.custom_ptr, inp, out)
def free_custom_allreduce(self, group):
self.free_shared_buffer(self.buffer_ptrs, group)
self.free_shared_buffer(self.tmp_result_buffer_ptrs, group)
self.free_shared_buffer(self.barrier_in_ptrs, group)
self.free_shared_buffer(self.barrier_out_ptrs, group)
custom_ops.custom_dispose(self.custom_ptr)
def init_vllm_allreduce(self, rank, group):
self.vllm_rank = rank
self.vllm_max_size = 8 * 1024 * 1024
self.vllm_meta_ptrs = self.create_shared_buffer(
vllm_ops.meta_size() + self.vllm_max_size, group=group
)
self.vllm_buffer_ptrs = self.create_shared_buffer(
self.vllm_max_size, group=group
)
self.vllm_rank_data = torch.empty(
8 * 1024 * 1024, dtype=torch.uint8, device=torch.device("cuda:0")
)
self.vllm_ptr = vllm_ops.init_custom_ar(
self.vllm_meta_ptrs, self.vllm_rank_data, rank, True
)
vllm_ops.register_buffer(self.vllm_ptr, self.vllm_buffer_ptrs)
def vllm_allreduce(self, inp, out):
vllm_ops.all_reduce(
self.vllm_ptr,
inp,
out,
self.vllm_buffer_ptrs[self.vllm_rank],
self.vllm_max_size,
)
def free_vllm_allreduce(self, group):
vllm_ops.dispose(self.vllm_ptr)
self.free_shared_buffer(self.vllm_meta_ptrs, group)
self.free_shared_buffer(self.vllm_buffer_ptrs, group)
@staticmethod
def init_distributed_env(world_size, rank, distributed_init_port):
device = torch.device("cuda:0")
torch.cuda.set_device(device)
ranks = [i for i in range(world_size)]
distributed_init_method = f"tcp://localhost:{distributed_init_port}"
dist.init_process_group(
backend="nccl",
init_method=distributed_init_method,
rank=rank,
world_size=world_size,
)
group = torch.distributed.new_group(ranks, backend="gloo")
return group
# compare result with torch.distributed
@ray.remote(num_gpus=1, max_calls=1)
def correctness(self, world_size, rank, distributed_init_port):
group = self.init_distributed_env(world_size, rank, distributed_init_port)
self.init_custom_allreduce(rank=rank, world_size=world_size, group=group)
test_loop = 10
for sz in self.test_sizes:
for dtype in [torch.float32, torch.float16, torch.bfloat16]:
for _ in range(test_loop):
inp1 = torch.randint(
1, 16, (sz,), dtype=dtype, device=torch.cuda.current_device()
)
out1 = torch.empty_like(inp1)
self.custom_allreduce(inp1, out1)
dist.all_reduce(inp1, group=group)
torch.testing.assert_close(out1, inp1)
self.free_custom_allreduce(group)
# compare performance with vllm
@ray.remote(num_gpus=1, max_calls=1)
def performance(self, world_size, rank, distributed_init_port):
group = self.init_distributed_env(world_size, rank, distributed_init_port)
self.init_vllm_allreduce(rank, group)
self.init_custom_allreduce(rank=rank, world_size=world_size, group=group)
for sz in self.test_sizes:
inp1 = torch.randint(
1, 16, (sz,), dtype=torch.float32, device=torch.cuda.current_device()
)
out1 = torch.empty_like(inp1)
test_loop = 5000
start = time.time()
for _ in range(test_loop):
self.custom_allreduce(inp1, out1)
elapse_custom = time.time() - start
start = time.time()
for _ in range(test_loop):
self.vllm_allreduce(inp1, out1)
elapse_vllm = time.time() - start
if rank == 0:
logger.warning(
f"test_size = {sz}, world_size = {world_size}, "
f"vllm time = {elapse_vllm * 1000 / test_loop:.4f}ms, "
f"custom time = {elapse_custom * 1000 / test_loop:.4f}ms "
)
self.free_custom_allreduce(group)
self.free_vllm_allreduce(group)
if __name__ == "__main__":
unittest.main()