inference/sglang/test/srt/test_eval_fp8_accuracy.py

160 lines
4.8 KiB
Python

import unittest
from types import SimpleNamespace
import torch
from sglang.srt.utils import kill_process_tree
from sglang.test.run_eval import run_eval
from sglang.test.test_utils import (
DEFAULT_FP8_MODEL_NAME_FOR_ACCURACY_TEST,
DEFAULT_FP8_MODEL_NAME_FOR_DYNAMIC_QUANT_ACCURACY_TEST,
DEFAULT_FP8_MODEL_NAME_FOR_MODELOPT_QUANT_ACCURACY_TEST,
DEFAULT_FP8_MODEL_NAME_FOR_MODELOPT_QUANT_ACCURACY_TEST_REVISION,
DEFAULT_MODEL_NAME_FOR_TEST,
DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
DEFAULT_URL_FOR_TEST,
CustomTestCase,
popen_launch_server,
)
class TestEvalFP8Accuracy(CustomTestCase):
@classmethod
def setUpClass(cls):
cls.model = DEFAULT_FP8_MODEL_NAME_FOR_ACCURACY_TEST
cls.base_url = DEFAULT_URL_FOR_TEST
cls.process = popen_launch_server(
cls.model, cls.base_url, timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH
)
@classmethod
def tearDownClass(cls):
kill_process_tree(cls.process.pid)
def test_mmlu(self):
args = SimpleNamespace(
base_url=self.base_url,
model=self.model,
eval_name="mmlu",
num_examples=64,
num_threads=32,
temperature=0.1,
)
metrics = run_eval(args)
self.assertGreaterEqual(metrics["score"], 0.61)
class TestEvalFP8DynamicQuantAccuracy(CustomTestCase):
def _run_test(self, model, other_args, expected_score):
base_url = DEFAULT_URL_FOR_TEST
other_args = other_args or []
process = popen_launch_server(
model,
base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
other_args=other_args,
)
try:
args = SimpleNamespace(
base_url=base_url,
model=model,
eval_name="mmlu",
num_examples=64,
num_threads=32,
temperature=0.1,
)
metrics = run_eval(args)
self.assertGreaterEqual(metrics["score"], expected_score)
finally:
kill_process_tree(process.pid)
def test_mmlu_offline_only(self):
"""Test with offline quantization only."""
self._run_test(
model=DEFAULT_FP8_MODEL_NAME_FOR_DYNAMIC_QUANT_ACCURACY_TEST,
other_args=[],
expected_score=0.64,
)
def test_mmlu_offline_and_online_override(self):
"""Test with both offline and online quantization."""
self._run_test(
model=DEFAULT_FP8_MODEL_NAME_FOR_DYNAMIC_QUANT_ACCURACY_TEST,
other_args=["--quantization", "w8a8_fp8"],
# inference will use sgl kernel w/ online quant override
# we observed that the accuracy is higher then offline only
expected_score=0.64,
)
def test_mmlu_online_only(self):
"""Test with online quantization only."""
self._run_test(
model=DEFAULT_MODEL_NAME_FOR_TEST,
# inference will use sgl kernel w/ online quantization only
# we observed that the accuracy is higher then offline only
other_args=["--quantization", "w8a8_fp8"],
expected_score=0.64,
)
def test_mmlu_fp16_baseline(self):
"""Test with unquantized fp16 baseline."""
self._run_test(
model=DEFAULT_MODEL_NAME_FOR_TEST,
other_args=[],
expected_score=0.64,
)
class TestEvalFP8ModelOptQuantAccuracy(CustomTestCase):
def _run_test(self, model, other_args, expected_score):
base_url = DEFAULT_URL_FOR_TEST
other_args = other_args or []
process = popen_launch_server(
model,
base_url,
timeout=DEFAULT_TIMEOUT_FOR_SERVER_LAUNCH,
other_args=other_args,
)
try:
args = SimpleNamespace(
base_url=base_url,
model=model,
eval_name="mmlu",
num_examples=64,
num_threads=32,
temperature=0.1,
)
metrics = run_eval(args)
self.assertGreaterEqual(metrics["score"], expected_score)
finally:
kill_process_tree(process.pid)
@unittest.skipIf(
torch.version.hip is not None, "modelopt quantization unsupported on ROCm"
)
def test_mmlu_offline_only(self):
"""Test with offline quantization only."""
self._run_test(
model=DEFAULT_FP8_MODEL_NAME_FOR_MODELOPT_QUANT_ACCURACY_TEST,
other_args=[
"--quantization",
"modelopt",
"--revision",
DEFAULT_FP8_MODEL_NAME_FOR_MODELOPT_QUANT_ACCURACY_TEST_REVISION,
],
expected_score=0.64,
)
if __name__ == "__main__":
unittest.main()