inference/sglang/test/srt/test_models_from_modelscope.py

41 lines
1.3 KiB
Python

import os
import shutil
import subprocess
import unittest
from unittest import mock
from sglang.srt.utils import prepare_model_and_tokenizer
from sglang.test.test_utils import CustomTestCase
class TestDownloadFromModelScope(CustomTestCase):
@classmethod
def setUpClass(cls):
cls.model = "iic/nlp_lstmcrf_word-segmentation_chinese-news"
stat, output = subprocess.getstatusoutput("pip install modelscope")
cls.with_modelscope_environ = {k: v for k, v in os.environ.items()}
cls.with_modelscope_environ["SGLANG_USE_MODELSCOPE"] = "True"
@classmethod
def tearDownClass(cls):
pass
def test_prepare_model_and_tokenizer(self):
from modelscope.utils.file_utils import get_model_cache_root
model_cache_root = get_model_cache_root()
if os.path.exists(model_cache_root):
shutil.rmtree(model_cache_root)
with mock.patch.dict(os.environ, self.with_modelscope_environ, clear=True):
model_path, tokenizer_path = prepare_model_and_tokenizer(
self.model, self.model
)
assert os.path.exists(os.path.join(model_path, "pytorch_model.bin"))
assert os.path.exists(os.path.join(tokenizer_path, "config.json"))
if __name__ == "__main__":
unittest.main()