inference/sglang/test/srt/test_srt_engine.py

191 lines
6.0 KiB
Python

"""
Usage:
python3 -m unittest test_srt_engine.TestSRTEngine.test_4_sync_async_stream_combination
"""
import asyncio
import json
import unittest
from types import SimpleNamespace
import torch
import sglang as sgl
from sglang.bench_offline_throughput import BenchArgs, throughput_test
from sglang.srt.hf_transformers_utils import get_tokenizer
from sglang.srt.server_args import ServerArgs
from sglang.test.few_shot_gsm8k_engine import run_eval
from sglang.test.test_utils import (
DEFAULT_SMALL_EMBEDDING_MODEL_NAME_FOR_TEST,
DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
CustomTestCase,
)
class TestSRTEngine(CustomTestCase):
def test_1_engine_runtime_consistency(self):
prompt = "Today is a sunny day and I like"
model_path = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
sampling_params = {"temperature": 0, "max_new_tokens": 8}
engine = sgl.Engine(model_path=model_path, random_seed=42)
out1 = engine.generate(prompt, sampling_params)["text"]
engine.shutdown()
runtime = sgl.Runtime(model_path=model_path, random_seed=42)
out2 = json.loads(runtime.generate(prompt, sampling_params))["text"]
runtime.shutdown()
print("==== Answer 1 ====")
print(out1)
print("==== Answer 2 ====")
print(out2)
self.assertEqual(out1, out2)
def test_2_engine_runtime_encode_consistency(self):
prompt = "Today is a sunny day and I like"
model_path = DEFAULT_SMALL_EMBEDDING_MODEL_NAME_FOR_TEST
engine = sgl.Engine(model_path=model_path, is_embedding=True, random_seed=42)
out1 = torch.tensor(engine.encode(prompt)["embedding"])
engine.shutdown()
runtime = sgl.Runtime(model_path=model_path, is_embedding=True, random_seed=42)
out2 = torch.tensor(json.loads(runtime.encode(prompt))["embedding"])
runtime.shutdown()
self.assertTrue(torch.allclose(out1, out2, atol=1e-5, rtol=1e-3))
def test_3_engine_token_ids_consistency(self):
# just to ensure there is no issue running multiple generate calls
prompt = "Today is a sunny day and I like"
model_path = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
sampling_params = {"temperature": 0, "max_new_tokens": 8}
engine = sgl.Engine(
model_path=model_path, random_seed=42, disable_radix_cache=True
)
out1 = engine.generate(prompt, sampling_params)["text"]
tokenizer = get_tokenizer(model_path)
token_ids = tokenizer.encode(prompt)
out2 = engine.generate(input_ids=token_ids, sampling_params=sampling_params)[
"text"
]
engine.shutdown()
print("==== Answer 1 ====")
print(out1)
print("==== Answer 2 ====")
print(out2)
self.assertEqual(out1, out2)
def test_4_sync_async_stream_combination(self):
prompt = "AI safety is"
sampling_params = {"temperature": 0.8, "top_p": 0.95}
# Create an LLM.
llm = sgl.Engine(
model_path=DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
)
if True:
# 1. sync + non streaming
print("\n\n==== 1. sync + non streaming ====")
output = llm.generate(prompt, sampling_params)
print(output["text"])
# 2. sync + streaming
print("\n\n==== 2. sync + streaming ====")
output_generator = llm.generate(prompt, sampling_params, stream=True)
offset = 0
for output in output_generator:
print(output["text"][offset:], end="", flush=True)
offset = len(output["text"])
print()
if True:
loop = asyncio.get_event_loop()
# 3. async + non_streaming
print("\n\n==== 3. async + non streaming ====")
output = loop.run_until_complete(
llm.async_generate(prompt, sampling_params)
)
print(output["text"])
# 4. async + streaming
async def async_streaming(engine):
generator = await engine.async_generate(
prompt, sampling_params, stream=True
)
offset = 0
async for output in generator:
print(output["text"][offset:], end="", flush=True)
offset = len(output["text"])
print()
print("\n\n==== 4. async + streaming ====")
loop.run_until_complete(async_streaming(llm))
llm.shutdown()
def test_5_gsm8k(self):
args = SimpleNamespace(
model_path=DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
local_data_path=None,
num_shots=5,
num_questions=200,
)
metrics = run_eval(args)
self.assertGreater(metrics["accuracy"], 0.3)
def test_6_engine_cpu_offload(self):
prompt = "Today is a sunny day and I like"
model_path = DEFAULT_SMALL_MODEL_NAME_FOR_TEST
sampling_params = {"temperature": 0, "max_new_tokens": 8}
engine = sgl.Engine(
model_path=model_path,
random_seed=42,
max_total_tokens=128,
)
out1 = engine.generate(prompt, sampling_params)["text"]
engine.shutdown()
engine = sgl.Engine(
model_path=model_path,
random_seed=42,
max_total_tokens=128,
cpu_offload_gb=3,
)
out2 = engine.generate(prompt, sampling_params)["text"]
engine.shutdown()
print("==== Answer 1 ====")
print(out1)
print("==== Answer 2 ====")
print(out2)
self.assertEqual(out1, out2)
def test_7_engine_offline_throughput(self):
server_args = ServerArgs(
model_path=DEFAULT_SMALL_MODEL_NAME_FOR_TEST,
)
bench_args = BenchArgs(num_prompts=10)
result = throughput_test(server_args=server_args, bench_args=bench_args)
self.assertGreater(result["total_throughput"], 3000)
if __name__ == "__main__":
unittest.main()