289 lines
9.3 KiB
Python
289 lines
9.3 KiB
Python
import argparse
|
|
import json
|
|
import time
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from functools import partial
|
|
|
|
import guidance
|
|
from tqdm import tqdm
|
|
|
|
from sglang.test.test_utils import add_common_other_args_and_parse, get_call_generate
|
|
from sglang.utils import dump_state_text, read_jsonl
|
|
|
|
# there are some FSM bugs with json regex converted from pydantic model
|
|
# here use a string regex instead
|
|
# regex_string = build_regex_from_object(HarryPoterRole)
|
|
character_regex = (
|
|
r"""\{\n"""
|
|
+ r""" "name": "[\w\d\s]{1,16}",\n"""
|
|
+ r""" "house": "(Gryffindor|Slytherin|Ravenclaw|Hufflepuff)",\n"""
|
|
+ r""" "blood status": "(Pure-blood|Half-blood|Muggle-born)",\n"""
|
|
+ r""" "occupation": "(student|teacher|auror|ministry of magic|death eater|order of the phoenix)",\n"""
|
|
+ r""" "wand": \{\n"""
|
|
+ r""" "wood": "[\w\d\s]{1,16}",\n"""
|
|
+ r""" "core": "[\w\d\s]{1,16}",\n"""
|
|
+ r""" "length": [0-9]{1,2}\.[0-9]{0,2}\n"""
|
|
+ r""" \},\n"""
|
|
+ r""" "alive": "(Alive|Deceased)",\n"""
|
|
+ r""" "patronus": "[\w\d\s]{1,16}",\n"""
|
|
+ r""" "bogart": "[\w\d\s]{1,16}"\n"""
|
|
+ r"""\}"""
|
|
)
|
|
|
|
city_regex = (
|
|
r"""\{\n"""
|
|
+ r""" "name": "[\w\d\s]{1,16}",\n"""
|
|
+ r""" "country": "[\w\d\s]{1,16}",\n"""
|
|
+ r""" "latitude": [-+]?[0-9]*\.?[0-9]{0,2},\n"""
|
|
+ r""" "population": [-+]?[0-9]{1,9},\n"""
|
|
+ r""" "top 3 landmarks": \["[\w\d\s]{1,16}", "[\w\d\s]{1,16}", "[\w\d\s]{1,16}"\]\n"""
|
|
+ r"""\}"""
|
|
)
|
|
|
|
# fmt: off
|
|
def character_gen(name, generate):
|
|
s = name + " is a character in Harry Potter. Please fill in the following information about this character.\n"
|
|
s += generate(s, max_tokens=256, regex=character_regex)
|
|
return s
|
|
# fmt: on
|
|
|
|
# fmt: off
|
|
def city_gen(document, generate):
|
|
s = "Please extract the information of a city from the following wikipedia page.\n"
|
|
s += "Page begin.\n" + document + "Page end.\n"
|
|
s += "Here is the name, country, and symbol of the city in JSON format.\n"
|
|
s += generate(s, max_tokens=256, regex=city_regex)
|
|
return s
|
|
# fmt: on
|
|
|
|
|
|
@guidance
|
|
def character_maker(lm, name):
|
|
regex_str_no_quote = r"[\w\d\s]+"
|
|
regex_float = r"[0-9]+\.[0-9]+"
|
|
lm += f"""\
|
|
{name} is a character in Harry Potter. Please fill in the following information about this character.
|
|
{{
|
|
"name": "{guidance.gen("name", max_tokens=16, regex=regex_str_no_quote)}",
|
|
"house": "{guidance.select(options=['Gryffindor', 'Slytherin', 'Ravenclaw', 'Hufflepuff'], name='house')}",
|
|
"blood status": "{guidance.select(options=['Pure-blood', 'Half-blood', 'Muggle-born'], name='blood status')}",
|
|
"occupation": "{guidance.select(options=['student', 'teacher', 'auror', 'ministry of magic', 'death eater', 'order of the phoenix'], name='occupation')}",
|
|
"wand": {{
|
|
"wood": "{guidance.gen("wood", max_tokens=16, regex=regex_str_no_quote)}",
|
|
"core": "{guidance.gen('core', max_tokens=16, regex=regex_str_no_quote)}",
|
|
"length": {guidance.gen('length', max_tokens=10, regex=regex_float)}
|
|
}},
|
|
"alive": "{guidance.select(options=['Alive', 'Deceased'], name='alive')}",
|
|
"patronus": "{guidance.gen('patronus', max_tokens=16, regex=regex_str_no_quote)}",
|
|
"bogart": "{guidance.gen('bogart', max_tokens=16, regex=regex_str_no_quote)}"
|
|
}}
|
|
"""
|
|
|
|
return lm
|
|
|
|
|
|
async def call_generate_lmql(
|
|
prompt, temperature, max_tokens, regex, max_len=4096, model=None, **kwargs
|
|
):
|
|
assert model is not None
|
|
import lmql
|
|
|
|
@lmql.query(model=model)
|
|
async def program(question, max_tokens, regex):
|
|
'''lmql
|
|
"""{question}[ANSWER]""" where len(TOKENS(ANSWER)) < max_tokens and REGEX(ANSWER, regex)
|
|
return ANSWER
|
|
'''
|
|
|
|
return await program(
|
|
question=prompt,
|
|
temperature=temperature,
|
|
max_tokens=max_tokens,
|
|
max_len=max_len,
|
|
regex=regex,
|
|
**kwargs,
|
|
)
|
|
|
|
|
|
@guidance
|
|
def city_maker(lm, document):
|
|
regex_str_no_quote = r"[\w\d\s]+"
|
|
regex_float = r"[0-9]+\.[0-9]+"
|
|
lm += f"""\
|
|
Please extract the information of a city from the following wikipedia page.
|
|
Page begin.
|
|
{document}
|
|
Page end.
|
|
Here is the name, country, and symbol of the city in JSON format.
|
|
{{
|
|
"name": "{guidance.gen("name", max_tokens=16, regex=regex_str_no_quote)}",
|
|
"country": "{guidance.gen("country", max_tokens=16, regex=regex_str_no_quote)}",
|
|
"latitude": {guidance.gen("latitude", max_tokens=10, regex=regex_float)},
|
|
"population": {guidance.gen("population", max_tokens=10, regex=r"[0-9]+")},
|
|
"top 3 landmarks": [
|
|
"{guidance.gen("landmark1", max_tokens=16, regex=regex_str_no_quote)}", "{guidance.gen("landmark2", max_tokens=16, regex=regex_str_no_quote)}", "{guidance.gen("landmark3", max_tokens=16, regex=regex_str_no_quote)}"
|
|
]
|
|
}}
|
|
"""
|
|
|
|
return lm
|
|
|
|
|
|
def bench_character(args):
|
|
arguments = []
|
|
with open(args.data_path, "r") as f:
|
|
for line in f:
|
|
arguments.append({"name": line.strip()})
|
|
arguments = arguments[: args.num_jsons]
|
|
|
|
states = [None] * len(arguments)
|
|
|
|
# Select backend
|
|
if args.backend == "outlines":
|
|
call_generate = partial(get_call_generate(args), temperature=0)
|
|
|
|
def get_one_answer(i):
|
|
states[i] = character_gen(**arguments[i], generate=call_generate)
|
|
|
|
elif args.backend == "guidance":
|
|
model = guidance.models.LlamaCpp(
|
|
args.model_path,
|
|
n_gpu_layers=-1,
|
|
n_ctx=args.n_ctx,
|
|
)
|
|
|
|
def get_one_answer(i):
|
|
lm = model + character_maker(**arguments[i])
|
|
states[i] = lm
|
|
|
|
elif args.backend == "lmql":
|
|
import asyncio
|
|
|
|
import lmql
|
|
|
|
model = lmql.model(args.model_path, endpoint=f"{args.host}:{args.port}")
|
|
call_generate = partial(
|
|
call_generate_lmql,
|
|
model=model,
|
|
max_tokens=256,
|
|
regex=character_regex,
|
|
)
|
|
|
|
async def get_one_answer_async(i):
|
|
states[i] = await call_generate(prompt=arguments[i]["name"], temperature=0)
|
|
|
|
else:
|
|
raise ValueError(f"Invalid backend: {args.backend}")
|
|
|
|
tic = time.time()
|
|
|
|
if args.backend != "lmql":
|
|
if args.parallel == 1:
|
|
for i in tqdm(range(len(arguments))):
|
|
get_one_answer(i)
|
|
else:
|
|
with ThreadPoolExecutor(args.parallel) as executor:
|
|
rets = list(
|
|
tqdm(
|
|
executor.map(get_one_answer, list(range(len(arguments)))),
|
|
total=len(arguments),
|
|
)
|
|
)
|
|
for _ in rets:
|
|
pass
|
|
else:
|
|
batches = []
|
|
for i in range(0, len(arguments), args.parallel):
|
|
batches.append(list(range(i, min(i + args.parallel, len(arguments)))))
|
|
loop = asyncio.get_event_loop()
|
|
|
|
for bt in tqdm(batches):
|
|
loop.run_until_complete(
|
|
asyncio.gather(*[get_one_answer_async(i) for i in bt])
|
|
)
|
|
|
|
latency = time.time() - tic
|
|
|
|
return states, latency
|
|
|
|
|
|
def bench_city_doc(args):
|
|
arguments = []
|
|
for line in read_jsonl(args.data_path):
|
|
arguments.append({"document": line["document"]})
|
|
arguments = arguments[: args.num_jsons]
|
|
|
|
states = [None] * len(arguments)
|
|
|
|
# Select backend
|
|
if args.backend == "outlines":
|
|
call_generate = partial(get_call_generate(args), temperature=0)
|
|
|
|
def get_one_answer(i):
|
|
states[i] = city_gen(**arguments[i], generate=call_generate)
|
|
|
|
elif args.backend == "guidance":
|
|
model = guidance.models.LlamaCpp(
|
|
args.model_path,
|
|
n_gpu_layers=-1,
|
|
n_ctx=args.n_ctx,
|
|
)
|
|
|
|
def get_one_answer(i):
|
|
lm = model + city_maker(**arguments[i])
|
|
states[i] = lm
|
|
|
|
else:
|
|
raise ValueError(f"Invalid backend: {args.backend}")
|
|
|
|
tic = time.time()
|
|
if args.parallel == 1:
|
|
for i in tqdm(range(len(arguments))):
|
|
get_one_answer(i)
|
|
else:
|
|
with ThreadPoolExecutor(args.parallel) as executor:
|
|
rets = executor.map(get_one_answer, list(range(len(arguments))))
|
|
for _ in rets:
|
|
pass
|
|
|
|
latency = time.time() - tic
|
|
|
|
return states, latency
|
|
|
|
|
|
def main(args):
|
|
if args.mode == "character":
|
|
args.data_path = "dataset.txt"
|
|
states, latency = bench_character(args)
|
|
elif args.mode == "city":
|
|
args.data_path = "questions.jsonl"
|
|
states, latency = bench_city_doc(args)
|
|
|
|
# Compute accuracy
|
|
print(f"Latency: {latency:.3f}")
|
|
|
|
# Write results
|
|
dump_state_text(f"tmp_output_{args.backend}_{args.mode}.txt", states)
|
|
|
|
with open(args.result_file, "a") as fout:
|
|
value = {
|
|
"task": "json_jump_forward",
|
|
"backend": args.backend,
|
|
"latency": round(latency, 3),
|
|
"num_jsons": args.num_jsons,
|
|
"mode": args.mode,
|
|
"parallel": args.parallel,
|
|
}
|
|
fout.write(json.dumps(value) + "\n")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--data-path", type=str)
|
|
parser.add_argument("--num-jsons", type=int, default=50)
|
|
parser.add_argument(
|
|
"--mode", type=str, default="character", choices=["character", "city"]
|
|
)
|
|
args = add_common_other_args_and_parse(parser)
|
|
main(args)
|