97 lines
3.0 KiB
Python
97 lines
3.0 KiB
Python
import argparse
|
|
import json
|
|
import os
|
|
import time
|
|
|
|
import tqdm
|
|
|
|
import sglang as sgl
|
|
from sglang.test.test_utils import (
|
|
add_common_sglang_args_and_parse,
|
|
select_sglang_backend,
|
|
)
|
|
from sglang.utils import dump_state_text, read_jsonl
|
|
|
|
|
|
@sgl.function
|
|
def image_qa(s, image_file, question):
|
|
s += sgl.user(sgl.image(image_file) + question)
|
|
s += sgl.assistant(sgl.gen("answer", max_tokens=args.max_tokens))
|
|
|
|
|
|
def main(args):
|
|
lines = list(read_jsonl(args.question_file))[: args.num_questions]
|
|
arguments = [
|
|
{
|
|
"image_file": os.path.abspath(args.image_folder + "/" + l["image"]),
|
|
"question": l["text"],
|
|
}
|
|
for l in lines
|
|
]
|
|
# arguments = [
|
|
# {"image_file":
|
|
# Image.open(os.path.abspath(args.image_folder + "/" + l["image"])),
|
|
# "question": l["text"]} for l in lines
|
|
# ]
|
|
|
|
states = [None] * len(lines)
|
|
|
|
# Select backend
|
|
backend = select_sglang_backend(args)
|
|
sgl.set_default_backend(backend)
|
|
|
|
# Run requests
|
|
tic = time.time()
|
|
if args.parallel == 1:
|
|
for i in tqdm.tqdm(range(len(lines))):
|
|
image_file = arguments[i]["image_file"]
|
|
question = arguments[i]["question"]
|
|
ret = image_qa.run(image_file=image_file, question=question, temperature=0)
|
|
states[i] = ret
|
|
else:
|
|
states = image_qa.run_batch(
|
|
arguments, temperature=0, num_threads=args.parallel, progress_bar=True
|
|
)
|
|
latency = time.time() - tic
|
|
|
|
print(f"Latency: {latency:.3f}")
|
|
|
|
# Write results
|
|
dump_state_text(f"tmp_output_{args.backend}.txt", states)
|
|
|
|
print(f"Write output to {args.answer_file}")
|
|
with open(args.answer_file, "w") as fout:
|
|
for i in range(len(lines)):
|
|
value = {
|
|
"question_id": lines[i]["question_id"],
|
|
"prompt": lines[i]["text"],
|
|
"text": states[i]["answer"].strip(),
|
|
"model_id": backend.model_info["model_path"],
|
|
"answer_id": i,
|
|
"metadata": {},
|
|
}
|
|
fout.write(json.dumps(value) + "\n")
|
|
|
|
with open(args.result_file, "a") as fout:
|
|
value = {
|
|
"task": "llava_bench",
|
|
"backend": args.backend,
|
|
"num_gpus": 1,
|
|
"latency": round(latency, 3),
|
|
"num_requests": len(lines),
|
|
"parallel": args.parallel,
|
|
}
|
|
fout.write(json.dumps(value) + "\n")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--question-file", type=str, default="questions.jsonl")
|
|
parser.add_argument("--answer-file", type=str, default="answers.jsonl")
|
|
parser.add_argument("--image-folder", type=str, default="./images")
|
|
parser.add_argument("--temperature", type=float, default=0.0)
|
|
parser.add_argument("--num-questions", type=int, default=None)
|
|
parser.add_argument("--max-tokens", type=int, default=768)
|
|
args = add_common_sglang_args_and_parse(parser)
|
|
main(args)
|