This commit is contained in:
parent
d809ada414
commit
815827e031
|
|
@ -0,0 +1,247 @@
|
|||
#!/usr/bin/env bash
|
||||
set -euo pipefail
|
||||
|
||||
# ===== 可调参数 =====
|
||||
CKPT_ROOT="/home/test/checkpoints/q3-32b-lora" # 若实际是 .../checkpoint-62/global_step62,请把 CKPT_ROOT 改成 .../checkpoint-62
|
||||
TAG="global_step30"
|
||||
HOSTS=(tn01 tn02 tn03 tn04 tn05 tn06)
|
||||
AGGREGATOR_HOST="tn06" # 本脚本运行/汇总所在机器
|
||||
EXPECTED_SHARDS_PER_HOST=4 # 每机应写出分片数(按你的并行布局)
|
||||
MAX_SHARD_SIZE="5GB"
|
||||
|
||||
# ★★★ 新增:参考模型目录(你用来做 LoRA 的 Qwen3-32B 或其 Instruct 变体) ★★★
|
||||
REF_MODEL_DIR="/home/test/Qwen3-32B"
|
||||
|
||||
STRICT_PRECHECK=true # true: 预检不通过就退出;false: 仅告警
|
||||
SSH_OPTS="-o BatchMode=yes -o StrictHostKeyChecking=accept-new -o ConnectTimeout=8"
|
||||
RSYNC_OPTS="-a --info=progress2 --human-readable --partial --inplace"
|
||||
# ====================
|
||||
|
||||
# ===== 派生参数(一般不用改) =====
|
||||
EXPECTED_TOTAL_SHARDS=$(( EXPECTED_SHARDS_PER_HOST * ${#HOSTS[@]} ))
|
||||
STAGING_BASE="${CKPT_ROOT}/_staging"
|
||||
STAGING_TAG_DIR="${STAGING_BASE}/${TAG}"
|
||||
OUT_DIR="${CKPT_ROOT}/merged-${TAG}"
|
||||
TMP_PT_DIR="${CKPT_ROOT}/_tmp-fp32-pt-${TAG}" # 临时 FP32(pytorch_model.bin)目录
|
||||
export OUT_DIR TMP_PT_DIR MAX_SHARD_SIZE REF_MODEL_DIR
|
||||
# =================================
|
||||
|
||||
echo "== 预检查 SSH =="
|
||||
for h in "${HOSTS[@]}"; do
|
||||
ssh ${SSH_OPTS} "$h" "true" >/dev/null || { echo "!! 无法免密 SSH 到 $h"; exit 1; }
|
||||
done
|
||||
|
||||
echo "== 0/7 逐节点分片预检(统计各机 ${CKPT_ROOT}/${TAG} 下的 *model_states.pt)=="
|
||||
remote_total=0
|
||||
agg_cnt=0
|
||||
for h in "${HOSTS[@]}"; do
|
||||
c=$(ssh ${SSH_OPTS} "$h" "find '${CKPT_ROOT}/${TAG}' -maxdepth 1 -type f -name '*model_states.pt' 2>/dev/null | wc -l" || echo 0)
|
||||
c=$(echo "$c" | tr -d ' ')
|
||||
printf " - %-8s: %s 分片\n" "$h" "$c"
|
||||
if [[ "$h" == "$AGGREGATOR_HOST" ]]; then
|
||||
agg_cnt=$c
|
||||
else
|
||||
remote_total=$(( remote_total + c ))
|
||||
if (( c < EXPECTED_SHARDS_PER_HOST )); then
|
||||
echo "!! 预警:$h 分片仅 $c 个(期望 ${EXPECTED_SHARDS_PER_HOST})" >&2
|
||||
fi
|
||||
fi
|
||||
done
|
||||
expected_remote_total=$(( EXPECTED_TOTAL_SHARDS - EXPECTED_SHARDS_PER_HOST ))
|
||||
echo " - 远端合计(不含 ${AGGREGATOR_HOST}):$remote_total(期望 ${expected_remote_total})"
|
||||
echo " - ${AGGREGATOR_HOST} 自身:$agg_cnt(期望 ${EXPECTED_SHARDS_PER_HOST})"
|
||||
|
||||
precheck_ok=true
|
||||
if (( remote_total != expected_remote_total )); then
|
||||
echo "!! 远端总分片不等:实际 ${remote_total} / 期望 ${expected_remote_total}" >&2
|
||||
precheck_ok=false
|
||||
fi
|
||||
if (( agg_cnt < EXPECTED_SHARDS_PER_HOST )); then
|
||||
echo "!! ${AGGREGATOR_HOST} 本机分片不足:实际 ${agg_cnt} / 期望 ${EXPECTED_SHARDS_PER_HOST}" >&2
|
||||
precheck_ok=false
|
||||
fi
|
||||
if [[ "${STRICT_PRECHECK}" == "true" && "${precheck_ok}" == "false" ]]; then
|
||||
echo "!! STRICT_PRECHECK 开启:预检不通过,停止执行" >&2
|
||||
exit 2
|
||||
fi
|
||||
[[ "${precheck_ok}" == "true" ]] && echo "OK: 预检通过(远端=${remote_total}、本机=${agg_cnt},总计期望=${EXPECTED_TOTAL_SHARDS})" || echo "WARN: 预检未通过(分片数量与期望不符),已启用宽松模式,继续执行..."
|
||||
|
||||
echo "== 1/7 准备 staging 目录(干净环境)=="
|
||||
rm -rf "${STAGING_TAG_DIR}"
|
||||
mkdir -p "${STAGING_TAG_DIR}"
|
||||
|
||||
echo "== 2/7 收集分片到 staging =="
|
||||
for h in "${HOSTS[@]}"; do
|
||||
if ssh ${SSH_OPTS} "$h" "test -d '${CKPT_ROOT}/${TAG}'"; then
|
||||
echo " - 收集 ${h}:${CKPT_ROOT}/${TAG}/ -> ${STAGING_TAG_DIR}/"
|
||||
rsync ${RSYNC_OPTS} -e "ssh ${SSH_OPTS}" \
|
||||
"${h}:${CKPT_ROOT}/${TAG}/" "${STAGING_TAG_DIR}/" || true
|
||||
else
|
||||
echo " - ${h} 无 ${CKPT_ROOT}/${TAG},跳过"
|
||||
fi
|
||||
done
|
||||
|
||||
echo "== 3/7 在 staging 校验总分片数(应为 ${EXPECTED_TOTAL_SHARDS})=="
|
||||
mapfile -t SHARDS < <(find "${STAGING_TAG_DIR}" -maxdepth 1 -type f -name "*model_states.pt" | sort -u)
|
||||
CNT=${#SHARDS[@]}
|
||||
echo " - staging 中发现分片数:${CNT}"
|
||||
if (( CNT != EXPECTED_TOTAL_SHARDS )); then
|
||||
echo "!! 分片总数不等:staging 实际 ${CNT} / 期望 ${EXPECTED_TOTAL_SHARDS}。请检查是否缺片或命名不一致。" >&2
|
||||
exit 3
|
||||
fi
|
||||
|
||||
echo "== 4/7 合并分片 -> 临时 FP32(PyTorch .bin),避免共享权重导致 safetensors 报错 =="
|
||||
rm -rf "${TMP_PT_DIR}"
|
||||
mkdir -p "${TMP_PT_DIR}"
|
||||
|
||||
python - <<PY
|
||||
from deepspeed.utils.zero_to_fp32 import convert_zero_checkpoint_to_fp32_state_dict
|
||||
convert_zero_checkpoint_to_fp32_state_dict(
|
||||
checkpoint_dir=r"${STAGING_BASE}",
|
||||
output_dir=r"${TMP_PT_DIR}",
|
||||
tag=r"${TAG}",
|
||||
safe_serialization=False, # 先落成 .bin(FP32)
|
||||
)
|
||||
print("合并完成(FP32 .bin):", r"${TMP_PT_DIR}")
|
||||
PY
|
||||
|
||||
# ★★★ 改动点:从参考模型复制 config/tokenizer,且强制覆盖(不要从 CKPT_ROOT 拷,LoRA 目录通常没 config.json)★★★
|
||||
echo "== 4.1/7 从参考模型复制 config/tokenizer 到临时 FP32 目录(装载需要)=="
|
||||
for f in config.json generation_config.json tokenizer_config.json tokenizer.json merges.txt vocab.json special_tokens_map.json added_tokens.json; do
|
||||
[[ -f "${REF_MODEL_DIR}/${f}" ]] && cp -f "${REF_MODEL_DIR}/${f}" "${TMP_PT_DIR}/" || true
|
||||
done
|
||||
|
||||
echo "== 5/7 装载 REF 模型结构 + 灌入 FP32 权重;如检测到 LoRA,则导出 adapter;否则保存 BF16 分片 safetensors =="
|
||||
python - <<'PY'
|
||||
import os, re, json, sys, torch, shutil
|
||||
from transformers import AutoConfig, AutoModelForCausalLM
|
||||
from safetensors.torch import save_file
|
||||
|
||||
TMP_PT_DIR = os.environ["TMP_PT_DIR"]
|
||||
REF_DIR = os.environ["REF_MODEL_DIR"]
|
||||
OUT_DIR = os.environ["OUT_DIR"]
|
||||
MAX_SHARD_SIZE = os.environ.get("MAX_SHARD_SIZE","5GB")
|
||||
|
||||
print("[load] ref model from:", REF_DIR)
|
||||
cfg = AutoConfig.from_pretrained(REF_DIR, trust_remote_code=True) # 确保 model_type=qwen3
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
REF_DIR, config=cfg, trust_remote_code=True,
|
||||
torch_dtype=torch.float32, low_cpu_mem_usage=False, device_map={"": "cpu"}
|
||||
)
|
||||
|
||||
sd_path = os.path.join(TMP_PT_DIR, "pytorch_model.bin")
|
||||
if not os.path.exists(sd_path):
|
||||
print("ERR: 未找到", sd_path, file=sys.stderr); sys.exit(9)
|
||||
state = torch.load(sd_path, map_location="cpu")
|
||||
|
||||
# 去掉可能的 'module.' 前缀
|
||||
state = { (k.split("module.",1)[-1]): v for k, v in state.items() }
|
||||
|
||||
# 识别 LoRA
|
||||
has_lora = any((".lora_A" in k) or (".lora_B" in k) or (".lora_alpha" in k) for k in state)
|
||||
print("[check] contains LoRA keys:", has_lora)
|
||||
|
||||
if has_lora:
|
||||
# ——导出 LoRA 适配器(不合到基座)——
|
||||
lora_state = {k: v for k, v in state.items()
|
||||
if (".lora_A" in k) or (".lora_B" in k) or (".lora_alpha" in k)}
|
||||
if not lora_state:
|
||||
print("ERR: 识别到 LoRA 但未筛出权重;中止。", file=sys.stderr); sys.exit(10)
|
||||
|
||||
lora_A_keys = [k for k in lora_state if k.endswith(".lora_A.weight")]
|
||||
r = state[lora_A_keys[0]].shape[0] if lora_A_keys else 16
|
||||
# alpha:优先读到的第一个;没有就用 r
|
||||
alpha = r
|
||||
for k in lora_A_keys:
|
||||
a = state.get(k.replace(".lora_A.weight", ".lora_alpha"))
|
||||
if a is not None:
|
||||
alpha = int(a.item()); break
|
||||
|
||||
# 统计 target_modules(叶子模块名)
|
||||
targets = sorted(set(re.sub(r"\.lora_(A|B)\.weight$", "", k) for k in lora_A_keys))
|
||||
target_modules = sorted(set(t.split(".")[-1] for t in targets)) or ["q_proj","k_proj","v_proj","o_proj","gate_proj","up_proj","down_proj"]
|
||||
|
||||
adapters_dir = os.path.join(OUT_DIR, "adapters")
|
||||
os.makedirs(adapters_dir, exist_ok=True)
|
||||
save_file(lora_state, os.path.join(adapters_dir, "adapter_model.safetensors"))
|
||||
|
||||
adapter_cfg = {
|
||||
"peft_type": "LORA",
|
||||
"base_model_name_or_path": REF_DIR,
|
||||
"r": int(r),
|
||||
"lora_alpha": int(alpha),
|
||||
"lora_dropout": 0.0,
|
||||
"bias": "none",
|
||||
"task_type": "CAUSAL_LM",
|
||||
"target_modules": target_modules
|
||||
}
|
||||
with open(os.path.join(adapters_dir, "adapter_config.json"), "w", encoding="utf-8") as f:
|
||||
json.dump(adapter_cfg, f, ensure_ascii=False, indent=2)
|
||||
|
||||
# 复制 tokenizer/generation/config,便于推理端直接使用
|
||||
for f in ("tokenizer_config.json","tokenizer.json","merges.txt","vocab.json","special_tokens_map.json","added_tokens.json","generation_config.json","config.json"):
|
||||
src = os.path.join(REF_DIR, f)
|
||||
if os.path.exists(src):
|
||||
dst = os.path.join(adapters_dir, f)
|
||||
if not os.path.exists(dst):
|
||||
try: shutil.copy(src, dst)
|
||||
except Exception: pass
|
||||
|
||||
print("[save] 导出了 LoRA 适配器 →", adapters_dir)
|
||||
print("INFO: 可用 Transformers/vLLM/SGLang 以『REF_MODEL + adapters/adapter_model.safetensors』方式推理。")
|
||||
else:
|
||||
# ——无 LoRA:按密集权重流程保存 BF16 分片 safetensors——
|
||||
missing, unexpected = model.load_state_dict(state, strict=False)
|
||||
print(f"[load] missing={len(missing)} unexpected={len(unexpected)}")
|
||||
# untie(如需要)
|
||||
try:
|
||||
emb = model.get_input_embeddings().weight if hasattr(model, "get_input_embeddings") else None
|
||||
head = model.lm_head.weight if hasattr(model, "lm_head") else None
|
||||
if emb is not None and head is not None and emb.data_ptr() == head.data_ptr():
|
||||
with torch.no_grad():
|
||||
model.lm_head.weight = torch.nn.Parameter(head.detach().clone())
|
||||
print("[fix] untied lm_head from embed_tokens")
|
||||
except Exception as e:
|
||||
print("[fix] skip untie check:", e)
|
||||
|
||||
model.to(dtype=torch.bfloat16)
|
||||
os.makedirs(OUT_DIR, exist_ok=True)
|
||||
model.save_pretrained(OUT_DIR, safe_serialization=True, max_shard_size=MAX_SHARD_SIZE)
|
||||
print("[save] BF16 safetensors →", OUT_DIR)
|
||||
PY
|
||||
|
||||
echo "== 5.1/7 拷贝(/补齐)最终目录的 tokenizer/config 工件(如存在)=="
|
||||
for f in config.json generation_config.json tokenizer_config.json tokenizer.json merges.txt vocab.json special_tokens_map.json added_tokens.json; do
|
||||
[[ -f "${REF_MODEL_DIR}/${f}" ]] && cp -n "${REF_MODEL_DIR}/${f}" "${OUT_DIR}/" || true
|
||||
done
|
||||
|
||||
echo "== 6/7 自检(索引与 config)=="
|
||||
python - <<'PY'
|
||||
import os, json, sys
|
||||
out_dir = os.environ.get("OUT_DIR")
|
||||
idx = os.path.join(out_dir, "model.safetensors.index.json")
|
||||
if os.path.exists(idx):
|
||||
with open(idx) as f: j = json.load(f)
|
||||
print(f"OK: 找到 safetensors 索引:{idx}(参数条目 {len(j.get('weight_map', {}))})")
|
||||
else:
|
||||
sfts = [x for x in os.listdir(out_dir) if x.endswith(".safetensors")]
|
||||
if len(sfts) == 1:
|
||||
print(f"NOTE: 单分片 safetensors:{sfts[0]}")
|
||||
elif len(sfts) == 0:
|
||||
# LoRA 分支下可能没有模型分片(只导出 adapters)
|
||||
print("NOTE: 未发现模型分片(若已导出 adapters/ 则属正常)")
|
||||
else:
|
||||
print("WARN: 未找到 model.safetensors.index.json,且分片数 != 1", file=sys.stderr)
|
||||
|
||||
try:
|
||||
from transformers import AutoConfig
|
||||
cfg = AutoConfig.from_pretrained(out_dir, trust_remote_code=True)
|
||||
print("OK: 读取到 config:", cfg.model_type, "hidden:", getattr(cfg,'hidden_size',None), "layers:", getattr(cfg,'num_hidden_layers',None))
|
||||
except Exception as e:
|
||||
print("NOTE: 最终目录无 config(若为纯 adapters 导出则正常):", e)
|
||||
PY
|
||||
|
||||
echo "== 7/7 清理提示 =="
|
||||
echo "临时 FP32 目录:${TMP_PT_DIR}"
|
||||
echo "输出目录(无 LoRA=密集权重;有 LoRA=adapters/):${OUT_DIR}"
|
||||
echo "完成。"
|
||||
Loading…
Reference in New Issue