diff --git a/train_sft_ds.py b/train_sft_ds.py index 52b6454..b395c07 100644 --- a/train_sft_ds.py +++ b/train_sft_ds.py @@ -5,9 +5,11 @@ import glob import socket import argparse import inspect +import sys from typing import Dict, List, Iterable, Iterator, Tuple, Optional import torch +import torch.distributed as dist from torch.utils.data import IterableDataset, Dataset from datasets import load_dataset @@ -91,7 +93,6 @@ class QwenChatSFTDataset(IterableDataset): for ex in self.ex_iter: msgs = ex.get("messages", None) if not msgs or not isinstance(msgs, list): - # 严格要求 messages 格式;发现旧的 "text" 数据直接跳过 continue # 可选:过滤掉带有非空 的样本(避免训练真实 COT) @@ -108,11 +109,11 @@ class QwenChatSFTDataset(IterableDataset): tools = ex.get("tools", None) - # 1) 按模型自带模板渲染(不要手写) + # 1) 按模型自带模板渲染 rendered: str = self.tok.apply_chat_template( msgs, tools=tools, - add_generation_prompt=False, # 训练包含 assistant 答案 + add_generation_prompt=False, tokenize=False ) if not isinstance(rendered, str) or not rendered.strip(): @@ -132,6 +133,10 @@ class QwenChatSFTDataset(IterableDataset): input_ids: List[int] = enc["input_ids"] offsets: List[Tuple[int, int]] = enc["offset_mapping"] + # 空样本防御:分词后长度为 0 + if not input_ids: + continue + # 4) 仅 assistant 计损失 labels = [-100] * len(input_ids) @@ -150,6 +155,10 @@ class QwenChatSFTDataset(IterableDataset): input_ids = input_ids[-self.seq_len:] labels = labels[-self.seq_len:] + # 若没有任何可训练 token(labels 全 -100),也跳过 + if all(v == -100 for v in labels): + continue + yield { "input_ids": torch.tensor(input_ids, dtype=torch.long), "attention_mask": torch.ones(len(input_ids), dtype=torch.long), @@ -206,7 +215,7 @@ def parse_args(): ap.add_argument("--max_steps", type=int, default=-1) ap.add_argument("--log_interval", type=int, default=10) ap.add_argument("--save_steps", type=int, default=500) - ap.add_argument("--eval_ratio", type=float, default=0.0) # 兜底抽样评估 + ap.add_argument("--eval_ratio", type=float, default=0.0) ap.add_argument("--seed", type=int, default=1337) ap.add_argument("--deepspeed", type=str, default="ds_config_zero3.json") ap.add_argument("--gradient_checkpointing", action="store_true") @@ -229,13 +238,20 @@ def main(): args = parse_args() set_seed(args.seed) + # ---- 初始化分布式(供一致性探针使用)---- + world_size = int(os.environ.get("WORLD_SIZE", "1")) + rank = int(os.environ.get("RANK", "0")) + local_rank = int(os.environ.get("LOCAL_RANK", str(args.local_rank))) + if world_size > 1 and dist.is_available() and not dist.is_initialized(): + backend = "nccl" if torch.cuda.is_available() else "gloo" + dist.init_process_group(backend=backend, init_method="env://") + if torch.cuda.is_available() and local_rank >= 0: + torch.cuda.set_device(local_rank) + # 1) 先补 tokenizer 的 pad tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=True, trust_remote_code=True) - if tokenizer.pad_token is None: - tokenizer.pad_token = tokenizer.eos_token # 供 padding 使用 - - # 可选:让警告更少 + tokenizer.pad_token = tokenizer.eos_token tokenizer.model_max_length = args.seq_len # 2) 再加载模型 @@ -246,23 +262,20 @@ def main(): trust_remote_code=True ) - # 3) 最后对齐模型的 pad_token_id + # 3) pad/alibi 等配置 model.config.pad_token_id = tokenizer.pad_token_id - model.config.use_cache = False # 训练时禁用 cache - + model.config.use_cache = False if args.gradient_checkpointing: model.gradient_checkpointing_enable(gradient_checkpointing_kwargs={"use_reentrant": False}) - try: torch.backends.cuda.enable_flash_sdp(False) torch.backends.cuda.enable_mem_efficient_sdp(False) - torch.backends.cuda.enable_math_sdp(True) # 走 math 实现 + torch.backends.cuda.enable_math_sdp(True) except Exception: pass # ===== 数据鲁棒性检查(多机各自执行)===== host = socket.gethostname() - rank = int(os.environ.get("RANK", "0")) files = sorted(glob.glob(args.data_glob)) if len(files) == 0: @@ -274,23 +287,14 @@ def main(): if is_main_process(): print(f"[data] matched {len(files)} files on host={host}, example[0]={files[0]}", flush=True) - # streaming 逐行读取(messages/tools 结构) - ds_stream = load_dataset( - "json", - data_files={"train": files}, - split="train", - streaming=True - ) - - def ex_iter(): - for ex in ds_stream: + # ====== 小探针:样本结构 ====== + ds_stream_probe = load_dataset("json", data_files={"train": files}, split="train", streaming=True) + def ex_iter_probe(): + for ex in ds_stream_probe: yield ex - - train_stream_probe = QwenChatSFTDataset(ex_iter(), tokenizer, seq_len=args.seq_len) - # 探针:确保能产出至少一个样本 - _probe_it = iter(train_stream_probe) + train_stream_probe = QwenChatSFTDataset(ex_iter_probe(), tokenizer, seq_len=args.seq_len) try: - _ = next(_probe_it) + _ = next(iter(train_stream_probe)) except StopIteration: raise RuntimeError( f"[host={host} rank={rank}] 数据文件匹配到了,但没有产生任何可训练样本。\n" @@ -299,22 +303,42 @@ def main(): "另外检查 seq_len 是否过小导致全部被裁。" ) - # 探针已消耗流;为正式训练重建一次 - ds_stream2 = load_dataset( - "json", - data_files={"train": files}, - split="train", - streaming=True - ) - - # 多机/多卡分片(让每个全局 rank 读不同子流) - # world_size = int(os.environ.get("WORLD_SIZE", "1")) - # ds_stream2 = ds_stream2.shard(num_shards=world_size, index=rank, contiguous=True) + # ====== 正式训练流 + 模数分片(不要求样本数整除 world_size) ====== + ds_stream2 = load_dataset("json", data_files={"train": files}, split="train", streaming=True) def ex_iter2(): - for ex in ds_stream2: - yield ex + for i, ex in enumerate(ds_stream2): + if i % max(world_size, 1) == rank: + yield ex train_stream = QwenChatSFTDataset(ex_iter2(), tokenizer, seq_len=args.seq_len) + # ====== 一致性探针:任意 rank 无样本 -> 全体退出 ====== + def has_one_sample(stream): + it = iter(stream) + try: + next(it); return 1 + except StopIteration: + return 0 + + ds_stream_probe2 = load_dataset("json", data_files={"train": files}, split="train", streaming=True) + def ex_iter2_probe(): + for i, ex in enumerate(ds_stream_probe2): + if i % max(world_size, 1) == rank: + yield ex + probe_stream = QwenChatSFTDataset(ex_iter2_probe(), tokenizer, seq_len=args.seq_len) + local_ok = has_one_sample(probe_stream) + + if dist.is_available() and dist.is_initialized(): + t = torch.tensor(local_ok, device=("cuda" if torch.cuda.is_available() else "cpu")) + dist.all_reduce(t, op=dist.ReduceOp.MIN) + if t.item() == 0: + if is_main_process(): + print("[FATAL] 至少有一个 rank 没有任何样本。请减少 WORLD_SIZE 或修正分片;本次训练不会启动。", flush=True) + dist.barrier() + sys.exit(2) + else: + if local_ok == 0: + print("[FATAL] 本机无样本,退出。", flush=True); sys.exit(2) + # ---- Eval 构造:优先使用 --eval_data_glob;否则才用 eval_ratio 抽样 ---- eval_dataset: Optional[Dataset] = None @@ -346,7 +370,6 @@ def main(): eval_dataset = ListDataset(eval_items) elif args.eval_ratio and args.eval_ratio > 0: - # 简易头部抽样(流式下仅作粗评) desired_eval_batches = 200 tmp_stream = load_dataset("json", data_files={"train": files}, split="train", streaming=True) def ex_iter_eval2(): @@ -363,7 +386,8 @@ def main(): if len(eval_samples) > 0: eval_dataset = ListDataset(eval_samples) - data_collator = SFTDataCollator(tokenizer, pad_to_length=args.seq_len) + # 更稳:联调阶段不强行 pad 到 4096 + data_collator = SFTDataCollator(tokenizer, pad_to_length=None) os.makedirs(args.output_dir, exist_ok=True) logging_dir = os.path.join(args.output_dir, "logs") @@ -401,7 +425,7 @@ def main(): save_steps=args.save_steps, save_total_limit=2, deepspeed=args.deepspeed, - dataloader_drop_last=True, + dataloader_drop_last=False, # 关键:别丢尾,避免空 batch dataloader_num_workers=0, dataloader_prefetch_factor=None, dataloader_pin_memory=False, diff --git a/train_sft_ds.py.old b/train_sft_ds.py.old new file mode 100644 index 0000000..a874b9d --- /dev/null +++ b/train_sft_ds.py.old @@ -0,0 +1,454 @@ +#!/usr/bin/env python3 +import os +os.environ.setdefault("TOKENIZERS_PARALLELISM", "false") +import glob +import socket +import argparse +import inspect +from typing import Dict, List, Iterable, Iterator, Tuple, Optional + +import torch +from torch.utils.data import IterableDataset, Dataset + +from datasets import load_dataset +from transformers import ( + AutoTokenizer, + AutoModelForCausalLM, + TrainingArguments, + Trainer, + set_seed +) +from transformers.trainer_callback import TrainerCallback + + +# ----------------- 进程工具 ----------------- +def is_main_process(): + return int(os.environ.get("RANK", "0")) == 0 + +def print_once(*args, **kwargs): + if is_main_process(): + print(*args, **kwargs, flush=True) + + +# ----------------- 日志回调 ----------------- +class CsvLossLogger(TrainerCallback): + def __init__(self, csv_path: str): + self.csv_path = csv_path + if is_main_process(): + os.makedirs(os.path.dirname(csv_path), exist_ok=True) + with open(self.csv_path, "w", encoding="utf-8") as f: + f.write("step,loss,lr,total_flos\n") + + def on_log(self, args, state, control, logs=None, **kwargs): + if not is_main_process() or logs is None: + return + with open(self.csv_path, "a", encoding="utf-8") as f: + f.write(f"{state.global_step},{logs.get('loss','')},{logs.get('learning_rate','')},{logs.get('total_flos','')}\n") + + +# ----------------- 仅监督 assistant 的数据集 ----------------- +def _assistant_char_spans(rendered: str) -> List[Tuple[int, int]]: + """ + 在 apply_chat_template 渲染后的文本中,返回所有 assistant 内容的字符区间 [start, end)。 + """ + spans: List[Tuple[int, int]] = [] + open_tag = "<|im_start|>assistant\n" + close_tag = "<|im_end|>\n" + pos = 0 + while True: + a = rendered.find(open_tag, pos) + if a == -1: + break + start = a + len(open_tag) + b = rendered.find(close_tag, start) + if b == -1: + break + spans.append((start, b)) + pos = b + len(close_tag) + return spans + +class QwenChatSFTDataset(IterableDataset): + """ + 期望 jsonl 每行形如: + {"messages":[{"role":"system","content":"..."},{"role":"user","content":"..."},{"role":"assistant","content":"..."}]} + 可选包含工具: + {"messages":[...], "tools":[{...}]} + + 工作流: + - 使用 tokenizer.apply_chat_template 渲染 + - 仅对 assistant 片段计损失(其他 token 的 label = -100) + - 超长序列保留尾部(通常包含回答) + """ + def __init__(self, + ex_iter: Iterable[dict], + tokenizer: AutoTokenizer, + seq_len: int = 4096): + self.ex_iter = ex_iter + self.tok = tokenizer + self.seq_len = seq_len + + def __iter__(self) -> Iterator[Dict[str, torch.Tensor]]: + for ex in self.ex_iter: + msgs = ex.get("messages", None) + if not msgs or not isinstance(msgs, list): + # 严格要求 messages 格式;发现旧的 "text" 数据直接跳过 + continue + + # 可选:过滤掉带有非空 的样本(避免训练真实 COT) + bad = False + for m in msgs: + if m.get("role") == "assistant" and isinstance(m.get("content"), str): + c = m["content"] + if "" in c and "" in c: + inner = c.split("")[-1].split("")[0].strip() + if inner: + bad = True; break + if bad: + continue + + tools = ex.get("tools", None) + + # 1) 按模型自带模板渲染(不要手写) + rendered: str = self.tok.apply_chat_template( + msgs, + tools=tools, + add_generation_prompt=False, # 训练包含 assistant 答案 + tokenize=False + ) + if not isinstance(rendered, str) or not rendered.strip(): + continue + + # 2) 找出 assistant 片段的字符区间 + spans = _assistant_char_spans(rendered) + if not spans: + continue + + # 3) 分词 + 字符/Token 对齐 + enc = self.tok( + rendered, + add_special_tokens=False, + return_offsets_mapping=True + ) + input_ids: List[int] = enc["input_ids"] + offsets: List[Tuple[int, int]] = enc["offset_mapping"] + + # 4) 仅 assistant 计损失 + labels = [-100] * len(input_ids) + + def in_any_span(lo: int, hi: int) -> bool: + for s, e in spans: + if not (hi <= s or lo >= e): + return True + return False + + for i, (lo, hi) in enumerate(offsets): + if in_any_span(lo, hi): + labels[i] = input_ids[i] + + # 5) 超长裁剪(保留尾部) + if len(input_ids) > self.seq_len: + input_ids = input_ids[-self.seq_len:] + labels = labels[-self.seq_len:] + + yield { + "input_ids": torch.tensor(input_ids, dtype=torch.long), + "attention_mask": torch.ones(len(input_ids), dtype=torch.long), + "labels": torch.tensor(labels, dtype=torch.long) + } + + +# ----------------- 专用 Collator:pad inputs, pad labels=-100 ----------------- +class SFTDataCollator: + def __init__(self, tokenizer: AutoTokenizer, pad_to_length: Optional[int] = None): + self.tok = tokenizer + self.pad_to_length = pad_to_length + assert self.tok.pad_token_id is not None + + def __call__(self, features): + def _to_list(x): return x.tolist() if isinstance(x, torch.Tensor) else list(x) + input_ids = [_to_list(f["input_ids"]) for f in features] + attn_masks = [_to_list(f["attention_mask"]) for f in features] + labels_list = [_to_list(f["labels"]) for f in features] + + max_len_in_batch = max(len(x) for x in input_ids) + target_len = self.pad_to_length if self.pad_to_length is not None else max_len_in_batch + + pad_id = self.tok.pad_token_id + batch_inp, batch_attn, batch_lab = [], [], [] + for inp, msk, lab in zip(input_ids, attn_masks, labels_list): + pad_len = target_len - len(inp) + if pad_len < 0: + inp, msk, lab = inp[:target_len], msk[:target_len], lab[:target_len] + pad_len = 0 + batch_inp.append(torch.tensor(inp + [pad_id]*pad_len, dtype=torch.long)) + batch_attn.append(torch.tensor(msk + [0]*pad_len, dtype=torch.long)) + batch_lab.append(torch.tensor(lab + [-100]*pad_len, dtype=torch.long)) + return { + "input_ids": torch.stack(batch_inp, dim=0), + "attention_mask": torch.stack(batch_attn, dim=0), + "labels": torch.stack(batch_lab, dim=0), + } + +# ----------------- 参数 ----------------- +def parse_args(): + ap = argparse.ArgumentParser() + ap.add_argument("--model_name_or_path", type=str, required=True, + help="本地权重目录或 HF 名称(如 /home/test/Qwen3-8B)") + ap.add_argument("--data_glob", type=str, required=True, + help="本地 jsonl 通配符(每台机器都需有同路径数据;每行应含 messages/可选 tools)") + ap.add_argument("--output_dir", type=str, required=True, + help="本地输出目录(各节点各自本地写)") + ap.add_argument("--seq_len", type=int, default=4096) + ap.add_argument("--learning_rate", type=float, default=2e-5) + ap.add_argument("--weight_decay", type=float, default=0.1) + ap.add_argument("--warmup_ratio", type=float, default=0.02) + ap.add_argument("--num_train_epochs", type=float, default=1.0) + ap.add_argument("--max_steps", type=int, default=-1) + ap.add_argument("--log_interval", type=int, default=10) + ap.add_argument("--save_steps", type=int, default=500) + ap.add_argument("--eval_ratio", type=float, default=0.0) # 兜底抽样评估 + ap.add_argument("--seed", type=int, default=1337) + ap.add_argument("--deepspeed", type=str, default="ds_config_zero3.json") + ap.add_argument("--gradient_checkpointing", action="store_true") + ap.add_argument("--bf16", action="store_true", + help="3090/A100/H100 等可开 bf16;同时在 DS 配置里也要开") + ap.add_argument("--per_device_train_batch_size", type=int, default=1) + ap.add_argument("--gradient_accumulation_steps", type=int, default=64) + ap.add_argument("--report_to", type=str, default="tensorboard", + choices=["none","tensorboard","wandb"]) + ap.add_argument("--wandb_project", type=str, default="ds-qwen3") + ap.add_argument("--eval_data_glob", type=str, default=None, + help="(可选) 测试/验证集 jsonl 通配符;如提供则优先使用") + ap.add_argument("--local_rank", type=int, default=-1, + help="for deepspeed/torchrun launcher; ignored by user code") + return ap.parse_args() + + +# ----------------- 主函数 ----------------- +def main(): + args = parse_args() + set_seed(args.seed) + + # 1) 先补 tokenizer 的 pad + tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, use_fast=True, trust_remote_code=True) + + if tokenizer.pad_token is None: + tokenizer.pad_token = tokenizer.eos_token # 供 padding 使用 + + # 可选:让警告更少 + tokenizer.model_max_length = args.seq_len + + # 2) 再加载模型 + model = AutoModelForCausalLM.from_pretrained( + args.model_name_or_path, + torch_dtype=(torch.bfloat16 if args.bf16 else torch.float16), + low_cpu_mem_usage=True, + trust_remote_code=True + ) + + # 3) 最后对齐模型的 pad_token_id + model.config.pad_token_id = tokenizer.pad_token_id + model.config.use_cache = False # 训练时禁用 cache + + if args.gradient_checkpointing: + model.gradient_checkpointing_enable(gradient_checkpointing_kwargs={"use_reentrant": False}) + + try: + torch.backends.cuda.enable_flash_sdp(False) + torch.backends.cuda.enable_mem_efficient_sdp(False) + torch.backends.cuda.enable_math_sdp(True) # 走 math 实现 + except Exception: + pass + + # ===== 数据鲁棒性检查(多机各自执行)===== + host = socket.gethostname() + rank = int(os.environ.get("RANK", "0")) + + files = sorted(glob.glob(args.data_glob)) + if len(files) == 0: + raise FileNotFoundError( + f"[host={host} rank={rank}] No files matched DATA_GLOB={args.data_glob}\n" + "每台机器都必须在相同本地路径下放置数据;" + "可通过 DATA_GLOB= ./run_ds.sh 覆写。" + ) + if is_main_process(): + print(f"[data] matched {len(files)} files on host={host}, example[0]={files[0]}", flush=True) + + # streaming 逐行读取(messages/tools 结构) + ds_stream = load_dataset( + "json", + data_files={"train": files}, + split="train", + streaming=True + ) + + def ex_iter(): + for ex in ds_stream: + yield ex + + train_stream_probe = QwenChatSFTDataset(ex_iter(), tokenizer, seq_len=args.seq_len) + # 探针:确保能产出至少一个样本 + _probe_it = iter(train_stream_probe) + try: + _ = next(_probe_it) + except StopIteration: + raise RuntimeError( + f"[host={host} rank={rank}] 数据文件匹配到了,但没有产生任何可训练样本。\n" + "请确认每行 JSON 至少包含 'messages'(列表,含 user/assistant)字段;" + "若含 请确保不包含真实思维文本,或移除。\n" + "另外检查 seq_len 是否过小导致全部被裁。" + ) + + # 探针已消耗流;为正式训练重建一次 + ds_stream2 = load_dataset( + "json", + data_files={"train": files}, + split="train", + streaming=True + ) + + # 多机/多卡分片(让每个全局 rank 读不同子流) + world_size = int(os.environ.get("WORLD_SIZE", "1")) + ds_stream2 = ds_stream2.shard(num_shards=world_size, index=rank, contiguous=True) + def ex_iter2(): + for ex in ds_stream2: + yield ex + train_stream = QwenChatSFTDataset(ex_iter2(), tokenizer, seq_len=args.seq_len) + + # ---- Eval 构造:优先使用 --eval_data_glob;否则才用 eval_ratio 抽样 ---- + eval_dataset: Optional[Dataset] = None + + class ListDataset(Dataset): + def __init__(self, items): self.items = items + def __len__(self): return len(self.items) + def __getitem__(self, idx): return self.items[idx] + + if args.eval_data_glob: + eval_files = sorted(glob.glob(args.eval_data_glob)) + if len(eval_files) == 0: + raise FileNotFoundError(f"[host={host} rank={rank}] No eval files matched EVAL_DATA_GLOB={args.eval_data_glob}") + if is_main_process(): + print(f"[eval] matched {len(eval_files)} files, example[0]={eval_files[0]}", flush=True) + + ds_eval_stream = load_dataset("json", data_files={"eval": eval_files}, split="eval", streaming=True) + def ex_iter_eval(): + for ex in ds_eval_stream: + yield ex + + eval_iterable = QwenChatSFTDataset(ex_iter_eval(), tokenizer, seq_len=args.seq_len) + eval_items: List[Dict[str, torch.Tensor]] = [] + for sample in eval_iterable: + eval_items.append(sample) + + if len(eval_items) == 0: + raise RuntimeError("[eval] eval_data_glob 读到了 0 条有效样本,请检查 messages 结构。") + + eval_dataset = ListDataset(eval_items) + + elif args.eval_ratio and args.eval_ratio > 0: + # 简易头部抽样(流式下仅作粗评) + desired_eval_batches = 200 + tmp_stream = load_dataset("json", data_files={"train": files}, split="train", streaming=True) + def ex_iter_eval2(): + for ex in tmp_stream: + yield ex + eval_stream = QwenChatSFTDataset(ex_iter_eval2(), tokenizer, seq_len=args.seq_len) + eval_samples = [] + it = iter(eval_stream) + for _ in range(desired_eval_batches): + try: + eval_samples.append(next(it)) + except StopIteration: + break + if len(eval_samples) > 0: + eval_dataset = ListDataset(eval_samples) + + data_collator = SFTDataCollator(tokenizer, pad_to_length=args.seq_len) + + os.makedirs(args.output_dir, exist_ok=True) + logging_dir = os.path.join(args.output_dir, "logs") + os.makedirs(logging_dir, exist_ok=True) + + # ---- 兼容 4.51(eval_strategy)与旧版(evaluation_strategy) ---- + ta_kwargs = {} + sig = inspect.signature(TrainingArguments.__init__).parameters + if eval_dataset is not None: + if "eval_strategy" in sig: + ta_kwargs["eval_strategy"] = "steps" + elif "evaluation_strategy" in sig: + ta_kwargs["evaluation_strategy"] = "steps" + else: + if "eval_strategy" in sig: + ta_kwargs["eval_strategy"] = "no" + elif "evaluation_strategy" in sig: + ta_kwargs["evaluation_strategy"] = "no" + + training_args = TrainingArguments( + output_dir=args.output_dir, + logging_dir=logging_dir, + do_train=True, + do_eval=(eval_dataset is not None), + eval_steps=max(50, args.save_steps // 5) if eval_dataset is not None else None, + per_device_train_batch_size=args.per_device_train_batch_size, + gradient_accumulation_steps=args.gradient_accumulation_steps, + learning_rate=args.learning_rate, + weight_decay=args.weight_decay, + warmup_ratio=args.warmup_ratio, + num_train_epochs=args.num_train_epochs if args.max_steps < 0 else 1.0, + max_steps=args.max_steps if args.max_steps > 0 else -1, + lr_scheduler_type="cosine", + logging_steps=args.log_interval, + save_steps=args.save_steps, + save_total_limit=2, + deepspeed=args.deepspeed, + dataloader_drop_last=True, + dataloader_num_workers=0, + dataloader_prefetch_factor=None, + dataloader_pin_memory=False, + report_to=([] if args.report_to == "none" else [args.report_to]), + bf16=args.bf16, + fp16=(not args.bf16), + gradient_checkpointing=args.gradient_checkpointing, + remove_unused_columns=False, + torch_compile=False, + save_on_each_node=False, + logging_first_step=True, + **ta_kwargs, + ) + + trainer = Trainer( + model=model, + args=training_args, + train_dataset=train_stream, + eval_dataset=eval_dataset, + processing_class=tokenizer, + data_collator=data_collator + ) + trainer.add_callback(CsvLossLogger(csv_path=os.path.join(args.output_dir, "loss.csv"))) + + # 无共享盘:各节点本地 output_dir 下是否已有 checkpoint-* + ckpt_exists = (os.path.isdir(args.output_dir) + and any(n.startswith("checkpoint-") for n in os.listdir(args.output_dir))) + resume_flag = True if ckpt_exists else None + + print_once(f"[host={socket.gethostname()}] Resume = {resume_flag is True}") + print_once("***** Starting training *****") + train_result = trainer.train(resume_from_checkpoint=resume_flag) + trainer.save_model() # DeepSpeed stage3_gather_16bit_weights_on_model_save=true 时,在 rank0 聚合整模型 + + metrics = train_result.metrics + trainer.log_metrics("train", metrics) + trainer.save_metrics("train", metrics) + trainer.save_state() + + if eval_dataset is not None: + print_once("***** Running eval *****") + eval_metrics = trainer.evaluate() + trainer.log_metrics("eval", eval_metrics) + trainer.save_metrics("eval", eval_metrics) + + print_once("Done.") + + +if __name__ == "__main__": + main()