This commit is contained in:
parent
815827e031
commit
c51a3bbedb
|
|
@ -9,7 +9,7 @@ AGGREGATOR_HOST="tn06" # 本脚本运行/汇总所在机器
|
||||||
EXPECTED_SHARDS_PER_HOST=4 # 每机应写出分片数(按你的并行布局)
|
EXPECTED_SHARDS_PER_HOST=4 # 每机应写出分片数(按你的并行布局)
|
||||||
MAX_SHARD_SIZE="5GB"
|
MAX_SHARD_SIZE="5GB"
|
||||||
|
|
||||||
# ★★★ 新增:参考模型目录(你用来做 LoRA 的 Qwen3-32B 或其 Instruct 变体) ★★★
|
# ★★★ 参考模型目录(用来做 LoRA 的 Qwen3-32B 或其 Instruct 变体) ★★★
|
||||||
REF_MODEL_DIR="/home/test/Qwen3-32B"
|
REF_MODEL_DIR="/home/test/Qwen3-32B"
|
||||||
|
|
||||||
STRICT_PRECHECK=true # true: 预检不通过就退出;false: 仅告警
|
STRICT_PRECHECK=true # true: 预检不通过就退出;false: 仅告警
|
||||||
|
|
@ -22,7 +22,7 @@ EXPECTED_TOTAL_SHARDS=$(( EXPECTED_SHARDS_PER_HOST * ${#HOSTS[@]} ))
|
||||||
STAGING_BASE="${CKPT_ROOT}/_staging"
|
STAGING_BASE="${CKPT_ROOT}/_staging"
|
||||||
STAGING_TAG_DIR="${STAGING_BASE}/${TAG}"
|
STAGING_TAG_DIR="${STAGING_BASE}/${TAG}"
|
||||||
OUT_DIR="${CKPT_ROOT}/merged-${TAG}"
|
OUT_DIR="${CKPT_ROOT}/merged-${TAG}"
|
||||||
TMP_PT_DIR="${CKPT_ROOT}/_tmp-fp32-pt-${TAG}" # 临时 FP32(pytorch_model.bin)目录
|
TMP_PT_DIR="${CKPT_ROOT}/_tmp-fp32-pt-${TAG}" # 临时 FP32 输出目录
|
||||||
export OUT_DIR TMP_PT_DIR MAX_SHARD_SIZE REF_MODEL_DIR
|
export OUT_DIR TMP_PT_DIR MAX_SHARD_SIZE REF_MODEL_DIR
|
||||||
# =================================
|
# =================================
|
||||||
|
|
||||||
|
|
@ -90,30 +90,62 @@ if (( CNT != EXPECTED_TOTAL_SHARDS )); then
|
||||||
exit 3
|
exit 3
|
||||||
fi
|
fi
|
||||||
|
|
||||||
echo "== 4/7 合并分片 -> 临时 FP32(PyTorch .bin),避免共享权重导致 safetensors 报错 =="
|
echo "== 4/7 合并分片 -> 临时 FP32(优先单文件 pytorch_model.bin;不支持则分片)=="
|
||||||
rm -rf "${TMP_PT_DIR}"
|
rm -rf "${TMP_PT_DIR}"
|
||||||
mkdir -p "${TMP_PT_DIR}"
|
mkdir -p "${TMP_PT_DIR}"
|
||||||
|
|
||||||
python - <<PY
|
python - <<PY
|
||||||
|
import os, json, glob, torch
|
||||||
from deepspeed.utils.zero_to_fp32 import convert_zero_checkpoint_to_fp32_state_dict
|
from deepspeed.utils.zero_to_fp32 import convert_zero_checkpoint_to_fp32_state_dict
|
||||||
|
|
||||||
|
TMP_PT_DIR = r"${TMP_PT_DIR}"
|
||||||
|
STAGING_BASE = r"${STAGING_BASE}"
|
||||||
|
TAG = r"${TAG}"
|
||||||
|
|
||||||
|
sd_single = os.path.join(TMP_PT_DIR, "pytorch_model.bin")
|
||||||
|
idx_json = os.path.join(TMP_PT_DIR, "pytorch_model.bin.index.json")
|
||||||
|
|
||||||
|
# 优先:新式接口,直接写单文件
|
||||||
|
ok = False
|
||||||
|
try:
|
||||||
convert_zero_checkpoint_to_fp32_state_dict(
|
convert_zero_checkpoint_to_fp32_state_dict(
|
||||||
checkpoint_dir=r"${STAGING_BASE}",
|
checkpoint_dir=STAGING_BASE,
|
||||||
output_dir=r"${TMP_PT_DIR}",
|
tag=TAG,
|
||||||
tag=r"${TAG}",
|
output_file=sd_single,
|
||||||
safe_serialization=False, # 先落成 .bin(FP32)
|
safe_serialization=False,
|
||||||
)
|
)
|
||||||
print("合并完成(FP32 .bin):", r"${TMP_PT_DIR}")
|
ok = True
|
||||||
|
except TypeError:
|
||||||
|
# 回退:写目录(多分片)
|
||||||
|
convert_zero_checkpoint_to_fp32_state_dict(
|
||||||
|
checkpoint_dir=STAGING_BASE,
|
||||||
|
tag=TAG,
|
||||||
|
output_dir=TMP_PT_DIR,
|
||||||
|
safe_serialization=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
# 若写成分片且存在索引,记录一下
|
||||||
|
if os.path.exists(sd_single):
|
||||||
|
print("合并完成(FP32 单文件):", sd_single)
|
||||||
|
else:
|
||||||
|
shards = sorted(glob.glob(os.path.join(TMP_PT_DIR, "pytorch_model-*.bin")))
|
||||||
|
if os.path.exists(idx_json):
|
||||||
|
with open(idx_json) as f: j = json.load(f)
|
||||||
|
n = len(set(j.get("weight_map", {}).values()))
|
||||||
|
print(f"合并完成(FP32 多分片):{n} 片,索引 {idx_json}")
|
||||||
|
else:
|
||||||
|
print(f"合并完成(FP32 多分片):{len(shards)} 片(无 index.json)")
|
||||||
PY
|
PY
|
||||||
|
|
||||||
# ★★★ 改动点:从参考模型复制 config/tokenizer,且强制覆盖(不要从 CKPT_ROOT 拷,LoRA 目录通常没 config.json)★★★
|
# ★★★ 从参考模型复制 config/tokenizer 到临时 FP32 目录(装载需要)★★★
|
||||||
echo "== 4.1/7 从参考模型复制 config/tokenizer 到临时 FP32 目录(装载需要)=="
|
echo "== 4.1/7 从参考模型复制 config/tokenizer 到临时 FP32 目录(装载需要)=="
|
||||||
for f in config.json generation_config.json tokenizer_config.json tokenizer.json merges.txt vocab.json special_tokens_map.json added_tokens.json; do
|
for f in config.json generation_config.json tokenizer_config.json tokenizer.json merges.txt vocab.json special_tokens_map.json added_tokens.json; do
|
||||||
[[ -f "${REF_MODEL_DIR}/${f}" ]] && cp -f "${REF_MODEL_DIR}/${f}" "${TMP_PT_DIR}/" || true
|
[[ -f "${REF_MODEL_DIR}/${f}" ]] && cp -f "${REF_MODEL_DIR}/${f}" "${TMP_PT_DIR}/" || true
|
||||||
done
|
done
|
||||||
|
|
||||||
echo "== 5/7 装载 REF 模型结构 + 灌入 FP32 权重;如检测到 LoRA,则导出 adapter;否则保存 BF16 分片 safetensors =="
|
echo "== 5/7 装载 REF 结构 + 灌入 FP32;若检测到 LoRA → 导出 adapter;否则保存 BF16 分片 safetensors =="
|
||||||
python - <<'PY'
|
python - <<'PY'
|
||||||
import os, re, json, sys, torch, shutil
|
import os, re, json, sys, torch, shutil, glob
|
||||||
from transformers import AutoConfig, AutoModelForCausalLM
|
from transformers import AutoConfig, AutoModelForCausalLM
|
||||||
from safetensors.torch import save_file
|
from safetensors.torch import save_file
|
||||||
|
|
||||||
|
|
@ -122,42 +154,152 @@ REF_DIR = os.environ["REF_MODEL_DIR"]
|
||||||
OUT_DIR = os.environ["OUT_DIR"]
|
OUT_DIR = os.environ["OUT_DIR"]
|
||||||
MAX_SHARD_SIZE = os.environ.get("MAX_SHARD_SIZE","5GB")
|
MAX_SHARD_SIZE = os.environ.get("MAX_SHARD_SIZE","5GB")
|
||||||
|
|
||||||
print("[load] ref model from:", REF_DIR)
|
sd_single = os.path.join(TMP_PT_DIR, "pytorch_model.bin")
|
||||||
cfg = AutoConfig.from_pretrained(REF_DIR, trust_remote_code=True) # 确保 model_type=qwen3
|
idx_json = os.path.join(TMP_PT_DIR, "pytorch_model.bin.index.json")
|
||||||
|
|
||||||
|
def log(*a, **k): print(*a, **k, flush=True)
|
||||||
|
|
||||||
|
def parse_index(idx_path):
|
||||||
|
with open(idx_path) as f:
|
||||||
|
j = json.load(f)
|
||||||
|
weight_map = j.get("weight_map", {})
|
||||||
|
shard_to_keys = {}
|
||||||
|
for k, shard in weight_map.items():
|
||||||
|
shard_to_keys.setdefault(shard, []).append(k)
|
||||||
|
return weight_map, shard_to_keys
|
||||||
|
|
||||||
|
def detect_lora_from_index(weight_map):
|
||||||
|
# 直接从权重名判断,不用先加载大权重
|
||||||
|
has = any((".lora_A" in k) or (".lora_B" in k) or (".lora_alpha" in k) for k in weight_map)
|
||||||
|
return has
|
||||||
|
|
||||||
|
def stream_collect_lora_from_shards(shard_to_keys):
|
||||||
|
lora_state = {}
|
||||||
|
lora_keys = []
|
||||||
|
for shard, keys in sorted(shard_to_keys.items()):
|
||||||
|
pick = [k for k in keys if (".lora_A" in k) or (".lora_B" in k) or (".lora_alpha" in k)]
|
||||||
|
if not pick: continue
|
||||||
|
part = torch.load(os.path.join(TMP_PT_DIR, shard), map_location="cpu")
|
||||||
|
for k in pick:
|
||||||
|
if k in part: lora_state[k] = part[k]
|
||||||
|
else:
|
||||||
|
# 极少数 DS 版本权重名不完全一致,容错跳过
|
||||||
|
pass
|
||||||
|
lora_keys.extend(pick)
|
||||||
|
return lora_state, lora_keys
|
||||||
|
|
||||||
|
def stream_load_full_into_model(model, shard_to_keys):
|
||||||
|
missing_total = 0
|
||||||
|
unexpected_total = 0
|
||||||
|
for shard, keys in sorted(shard_to_keys.items()):
|
||||||
|
part = torch.load(os.path.join(TMP_PT_DIR, shard), map_location="cpu")
|
||||||
|
m, u = model.load_state_dict(part, strict=False)
|
||||||
|
missing_total += len(m)
|
||||||
|
unexpected_total += len(u)
|
||||||
|
log(f"[load] missing_total={missing_total} unexpected_total={unexpected_total}")
|
||||||
|
|
||||||
|
log("[load] ref model from:", REF_DIR)
|
||||||
|
cfg = AutoConfig.from_pretrained(REF_DIR, trust_remote_code=True)
|
||||||
model = AutoModelForCausalLM.from_pretrained(
|
model = AutoModelForCausalLM.from_pretrained(
|
||||||
REF_DIR, config=cfg, trust_remote_code=True,
|
REF_DIR, config=cfg, trust_remote_code=True,
|
||||||
torch_dtype=torch.float32, low_cpu_mem_usage=False, device_map={"": "cpu"}
|
torch_dtype=torch.float32, low_cpu_mem_usage=False, device_map={"": "cpu"}
|
||||||
)
|
)
|
||||||
|
|
||||||
sd_path = os.path.join(TMP_PT_DIR, "pytorch_model.bin")
|
state = None
|
||||||
if not os.path.exists(sd_path):
|
has_lora = False
|
||||||
print("ERR: 未找到", sd_path, file=sys.stderr); sys.exit(9)
|
|
||||||
state = torch.load(sd_path, map_location="cpu")
|
|
||||||
|
|
||||||
# 去掉可能的 'module.' 前缀
|
if os.path.exists(sd_single):
|
||||||
|
log("[fp32] detected single file:", sd_single)
|
||||||
|
state = torch.load(sd_single, map_location="cpu")
|
||||||
|
# 去 'module.' 前缀
|
||||||
state = { (k.split("module.",1)[-1]): v for k, v in state.items() }
|
state = { (k.split("module.",1)[-1]): v for k, v in state.items() }
|
||||||
|
|
||||||
# 识别 LoRA
|
|
||||||
has_lora = any((".lora_A" in k) or (".lora_B" in k) or (".lora_alpha" in k) for k in state)
|
has_lora = any((".lora_A" in k) or (".lora_B" in k) or (".lora_alpha" in k) for k in state)
|
||||||
print("[check] contains LoRA keys:", has_lora)
|
elif os.path.exists(idx_json):
|
||||||
|
log("[fp32] detected sharded weights with index:", idx_json)
|
||||||
|
weight_map, shard_to_keys = parse_index(idx_json)
|
||||||
|
has_lora = detect_lora_from_index(weight_map)
|
||||||
if has_lora:
|
if has_lora:
|
||||||
# ——导出 LoRA 适配器(不合到基座)——
|
log("[check] contains LoRA keys: True (stream collecting)")
|
||||||
|
lora_state, lora_keys = stream_collect_lora_from_shards(shard_to_keys)
|
||||||
|
if not lora_state:
|
||||||
|
print("ERR: 识别到 LoRA 但未筛出权重;中止。", file=sys.stderr); sys.exit(10)
|
||||||
|
# 估 r / alpha
|
||||||
|
lora_A_keys = [k for k in lora_keys if k.endswith(".lora_A.weight")]
|
||||||
|
if lora_A_keys:
|
||||||
|
# 找到第一个 lora_A 所在分片并读取 shape
|
||||||
|
k0 = lora_A_keys[0]
|
||||||
|
shard = next(s for s, ks in shard_to_keys.items() if k0 in ks)
|
||||||
|
part = torch.load(os.path.join(TMP_PT_DIR, shard), map_location="cpu")
|
||||||
|
r = part[k0].shape[0]
|
||||||
|
a = part.get(k0.replace(".lora_A.weight", ".lora_alpha"))
|
||||||
|
alpha = int(a.item()) if (a is not None and hasattr(a, "item")) else int(r)
|
||||||
|
else:
|
||||||
|
r, alpha = 16, 16
|
||||||
|
|
||||||
|
adapters_dir = os.path.join(OUT_DIR, "adapters")
|
||||||
|
os.makedirs(adapters_dir, exist_ok=True)
|
||||||
|
save_file(lora_state, os.path.join(adapters_dir, "adapter_model.safetensors"))
|
||||||
|
|
||||||
|
targets = sorted(set(re.sub(r"\.lora_(A|B)\.weight$", "", k) for k in lora_A_keys))
|
||||||
|
target_modules = sorted(set(t.split(".")[-1] for t in targets)) or ["q_proj","k_proj","v_proj","o_proj","gate_proj","up_proj","down_proj"]
|
||||||
|
|
||||||
|
adapter_cfg = {
|
||||||
|
"peft_type": "LORA",
|
||||||
|
"base_model_name_or_path": REF_DIR,
|
||||||
|
"r": int(r),
|
||||||
|
"lora_alpha": int(alpha),
|
||||||
|
"lora_dropout": 0.0,
|
||||||
|
"bias": "none",
|
||||||
|
"task_type": "CAUSAL_LM",
|
||||||
|
"target_modules": target_modules
|
||||||
|
}
|
||||||
|
with open(os.path.join(adapters_dir, "adapter_config.json"), "w", encoding="utf-8") as f:
|
||||||
|
json.dump(adapter_cfg, f, ensure_ascii=False, indent=2)
|
||||||
|
|
||||||
|
# 复制 tokenizer/generation/config
|
||||||
|
for f in ("tokenizer_config.json","tokenizer.json","merges.txt","vocab.json","special_tokens_map.json","added_tokens.json","generation_config.json","config.json"):
|
||||||
|
src = os.path.join(REF_DIR, f)
|
||||||
|
if os.path.exists(src):
|
||||||
|
dst = os.path.join(adapters_dir, f)
|
||||||
|
if not os.path.exists(dst):
|
||||||
|
try: shutil.copy(src, dst)
|
||||||
|
except Exception: pass
|
||||||
|
|
||||||
|
log("[save] 导出了 LoRA 适配器 →", adapters_dir)
|
||||||
|
log("INFO: 可用 Transformers/vLLM/SGLang 以『REF_MODEL + adapters/adapter_model.safetensors』方式推理。")
|
||||||
|
sys.exit(0)
|
||||||
|
else:
|
||||||
|
log("[check] contains LoRA keys: False (stream loading into model)")
|
||||||
|
stream_load_full_into_model(model, shard_to_keys)
|
||||||
|
else:
|
||||||
|
# 无单文件也无 index.json,尝试兜底按分片名加载
|
||||||
|
shard_glob = sorted(glob.glob(os.path.join(TMP_PT_DIR, "pytorch_model-*.bin")))
|
||||||
|
if not shard_glob:
|
||||||
|
print("ERR: 未找到单文件或分片 FP32(pytorch_model.bin / .index.json / 分片)", file=sys.stderr); sys.exit(9)
|
||||||
|
log(f"[fp32] detected {len(shard_glob)} shards (no index.json), brute-load")
|
||||||
|
# 粗暴合并(可能占内存,但作为兜底)
|
||||||
|
state = {}
|
||||||
|
for sf in shard_glob:
|
||||||
|
part = torch.load(sf, map_location="cpu")
|
||||||
|
state.update(part)
|
||||||
|
state = { (k.split("module.",1)[-1]): v for k, v in state.items() }
|
||||||
|
has_lora = any((".lora_A" in k) or (".lora_B" in k) or (".lora_alpha" in k) for k in state)
|
||||||
|
|
||||||
|
if state is not None and has_lora:
|
||||||
|
log("[check] contains LoRA keys: True")
|
||||||
lora_state = {k: v for k, v in state.items()
|
lora_state = {k: v for k, v in state.items()
|
||||||
if (".lora_A" in k) or (".lora_B" in k) or (".lora_alpha" in k)}
|
if (".lora_A" in k) or (".lora_B" in k) or (".lora_alpha" in k)}
|
||||||
if not lora_state:
|
if not lora_state:
|
||||||
print("ERR: 识别到 LoRA 但未筛出权重;中止。", file=sys.stderr); sys.exit(10)
|
print("ERR: 识别到 LoRA 但未筛出权重;中止。", file=sys.stderr); sys.exit(10)
|
||||||
|
|
||||||
lora_A_keys = [k for k in lora_state if k.endswith(".lora_A.weight")]
|
lora_A_keys = [k for k in lora_state if k.endswith(".lora_A.weight")]
|
||||||
r = state[lora_A_keys[0]].shape[0] if lora_A_keys else 16
|
if lora_A_keys:
|
||||||
# alpha:优先读到的第一个;没有就用 r
|
r = state[lora_A_keys[0]].shape[0]
|
||||||
alpha = r
|
a = state.get(lora_A_keys[0].replace(".lora_A.weight", ".lora_alpha"))
|
||||||
for k in lora_A_keys:
|
alpha = int(a.item()) if (a is not None and hasattr(a, "item")) else int(r)
|
||||||
a = state.get(k.replace(".lora_A.weight", ".lora_alpha"))
|
else:
|
||||||
if a is not None:
|
r, alpha = 16, 16
|
||||||
alpha = int(a.item()); break
|
|
||||||
|
|
||||||
# 统计 target_modules(叶子模块名)
|
|
||||||
targets = sorted(set(re.sub(r"\.lora_(A|B)\.weight$", "", k) for k in lora_A_keys))
|
targets = sorted(set(re.sub(r"\.lora_(A|B)\.weight$", "", k) for k in lora_A_keys))
|
||||||
target_modules = sorted(set(t.split(".")[-1] for t in targets)) or ["q_proj","k_proj","v_proj","o_proj","gate_proj","up_proj","down_proj"]
|
target_modules = sorted(set(t.split(".")[-1] for t in targets)) or ["q_proj","k_proj","v_proj","o_proj","gate_proj","up_proj","down_proj"]
|
||||||
|
|
||||||
|
|
@ -178,7 +320,6 @@ if has_lora:
|
||||||
with open(os.path.join(adapters_dir, "adapter_config.json"), "w", encoding="utf-8") as f:
|
with open(os.path.join(adapters_dir, "adapter_config.json"), "w", encoding="utf-8") as f:
|
||||||
json.dump(adapter_cfg, f, ensure_ascii=False, indent=2)
|
json.dump(adapter_cfg, f, ensure_ascii=False, indent=2)
|
||||||
|
|
||||||
# 复制 tokenizer/generation/config,便于推理端直接使用
|
|
||||||
for f in ("tokenizer_config.json","tokenizer.json","merges.txt","vocab.json","special_tokens_map.json","added_tokens.json","generation_config.json","config.json"):
|
for f in ("tokenizer_config.json","tokenizer.json","merges.txt","vocab.json","special_tokens_map.json","added_tokens.json","generation_config.json","config.json"):
|
||||||
src = os.path.join(REF_DIR, f)
|
src = os.path.join(REF_DIR, f)
|
||||||
if os.path.exists(src):
|
if os.path.exists(src):
|
||||||
|
|
@ -187,12 +328,15 @@ if has_lora:
|
||||||
try: shutil.copy(src, dst)
|
try: shutil.copy(src, dst)
|
||||||
except Exception: pass
|
except Exception: pass
|
||||||
|
|
||||||
print("[save] 导出了 LoRA 适配器 →", adapters_dir)
|
log("[save] 导出了 LoRA 适配器 →", adapters_dir)
|
||||||
print("INFO: 可用 Transformers/vLLM/SGLang 以『REF_MODEL + adapters/adapter_model.safetensors』方式推理。")
|
log("INFO: 可用 Transformers/vLLM/SGLang 以『REF_MODEL + adapters/adapter_model.safetensors』方式推理。")
|
||||||
else:
|
sys.exit(0)
|
||||||
# ——无 LoRA:按密集权重流程保存 BF16 分片 safetensors——
|
|
||||||
|
# ——走到这里表示“无 LoRA”,把 FP32 权重注入模型并保存 BF16 safetensors——
|
||||||
|
if state is not None:
|
||||||
missing, unexpected = model.load_state_dict(state, strict=False)
|
missing, unexpected = model.load_state_dict(state, strict=False)
|
||||||
print(f"[load] missing={len(missing)} unexpected={len(unexpected)}")
|
log(f"[load] missing={len(missing)} unexpected={len(unexpected)}")
|
||||||
|
|
||||||
# untie(如需要)
|
# untie(如需要)
|
||||||
try:
|
try:
|
||||||
emb = model.get_input_embeddings().weight if hasattr(model, "get_input_embeddings") else None
|
emb = model.get_input_embeddings().weight if hasattr(model, "get_input_embeddings") else None
|
||||||
|
|
@ -200,14 +344,14 @@ else:
|
||||||
if emb is not None and head is not None and emb.data_ptr() == head.data_ptr():
|
if emb is not None and head is not None and emb.data_ptr() == head.data_ptr():
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
model.lm_head.weight = torch.nn.Parameter(head.detach().clone())
|
model.lm_head.weight = torch.nn.Parameter(head.detach().clone())
|
||||||
print("[fix] untied lm_head from embed_tokens")
|
log("[fix] untied lm_head from embed_tokens")
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
print("[fix] skip untie check:", e)
|
log("[fix] skip untie check:", e)
|
||||||
|
|
||||||
model.to(dtype=torch.bfloat16)
|
model.to(dtype=torch.bfloat16)
|
||||||
os.makedirs(OUT_DIR, exist_ok=True)
|
os.makedirs(OUT_DIR, exist_ok=True)
|
||||||
model.save_pretrained(OUT_DIR, safe_serialization=True, max_shard_size=MAX_SHARD_SIZE)
|
model.save_pretrained(OUT_DIR, safe_serialization=True, max_shard_size=MAX_SHARD_SIZE)
|
||||||
print("[save] BF16 safetensors →", OUT_DIR)
|
log("[save] BF16 safetensors →", OUT_DIR)
|
||||||
PY
|
PY
|
||||||
|
|
||||||
echo "== 5.1/7 拷贝(/补齐)最终目录的 tokenizer/config 工件(如存在)=="
|
echo "== 5.1/7 拷贝(/补齐)最终目录的 tokenizer/config 工件(如存在)=="
|
||||||
|
|
@ -217,7 +361,7 @@ done
|
||||||
|
|
||||||
echo "== 6/7 自检(索引与 config)=="
|
echo "== 6/7 自检(索引与 config)=="
|
||||||
python - <<'PY'
|
python - <<'PY'
|
||||||
import os, json, sys
|
import os, json
|
||||||
out_dir = os.environ.get("OUT_DIR")
|
out_dir = os.environ.get("OUT_DIR")
|
||||||
idx = os.path.join(out_dir, "model.safetensors.index.json")
|
idx = os.path.join(out_dir, "model.safetensors.index.json")
|
||||||
if os.path.exists(idx):
|
if os.path.exists(idx):
|
||||||
|
|
@ -231,8 +375,7 @@ else:
|
||||||
# LoRA 分支下可能没有模型分片(只导出 adapters)
|
# LoRA 分支下可能没有模型分片(只导出 adapters)
|
||||||
print("NOTE: 未发现模型分片(若已导出 adapters/ 则属正常)")
|
print("NOTE: 未发现模型分片(若已导出 adapters/ 则属正常)")
|
||||||
else:
|
else:
|
||||||
print("WARN: 未找到 model.safetensors.index.json,且分片数 != 1", file=sys.stderr)
|
print("WARN: 未找到 model.safetensors.index.json,且分片数 != 1")
|
||||||
|
|
||||||
try:
|
try:
|
||||||
from transformers import AutoConfig
|
from transformers import AutoConfig
|
||||||
cfg = AutoConfig.from_pretrained(out_dir, trust_remote_code=True)
|
cfg = AutoConfig.from_pretrained(out_dir, trust_remote_code=True)
|
||||||
|
|
|
||||||
Loading…
Reference in New Issue