#!/usr/bin/env bash set -euo pipefail # ===== 可调参数 ===== CKPT_ROOT="/home/test/checkpoints/q3-1.7b-ds4" # 若实际是 .../checkpoint-62/global_step62,请把 CKPT_ROOT 改成 .../checkpoint-62 TAG="global_step62" HOSTS=(tn01 tn02 tn03 tn04 tn05 tn06) AGGREGATOR_HOST="tn06" # 本脚本运行/汇总所在机器 EXPECTED_SHARDS_PER_HOST=4 # 每机应写出分片数(按你的并行布局) MAX_SHARD_SIZE="5GB" STRICT_PRECHECK=true # true: 预检不通过就退出;false: 仅告警 SSH_OPTS="-o BatchMode=yes -o StrictHostKeyChecking=accept-new -o ConnectTimeout=8" RSYNC_OPTS="-a --info=progress2 --human-readable --partial --inplace" # ==================== # ===== 派生参数(一般不用改) ===== EXPECTED_TOTAL_SHARDS=$(( EXPECTED_SHARDS_PER_HOST * ${#HOSTS[@]} )) STAGING_BASE="${CKPT_ROOT}/_staging" STAGING_TAG_DIR="${STAGING_BASE}/${TAG}" OUT_DIR="${CKPT_ROOT}/merged-${TAG}" TMP_PT_DIR="${CKPT_ROOT}/_tmp-fp32-pt-${TAG}" # 临时 FP32(pytorch_model.bin)目录 export OUT_DIR TMP_PT_DIR MAX_SHARD_SIZE # ================================= echo "== 预检查 SSH ==" for h in "${HOSTS[@]}"; do ssh ${SSH_OPTS} "$h" "true" >/dev/null || { echo "!! 无法免密 SSH 到 $h"; exit 1; } done echo "== 0/7 逐节点分片预检(统计各机 ${CKPT_ROOT}/${TAG} 下的 *model_states.pt)==" remote_total=0 agg_cnt=0 for h in "${HOSTS[@]}"; do c=$(ssh ${SSH_OPTS} "$h" "find '${CKPT_ROOT}/${TAG}' -maxdepth 1 -type f -name '*model_states.pt' 2>/dev/null | wc -l" || echo 0) c=$(echo "$c" | tr -d ' ') printf " - %-8s: %s 分片\n" "$h" "$c" if [[ "$h" == "$AGGREGATOR_HOST" ]]; then agg_cnt=$c else remote_total=$(( remote_total + c )) # 每台机最简单的 sanity:至少应有 EXPECTED_SHARDS_PER_HOST 个 if (( c < EXPECTED_SHARDS_PER_HOST )); then echo "!! 预警:$h 分片仅 $c 个(期望 ${EXPECTED_SHARDS_PER_HOST})" >&2 fi fi done expected_remote_total=$(( EXPECTED_TOTAL_SHARDS - EXPECTED_SHARDS_PER_HOST )) echo " - 远端合计(不含 ${AGGREGATOR_HOST}):$remote_total(期望 ${expected_remote_total})" echo " - ${AGGREGATOR_HOST} 自身:$agg_cnt(期望 ${EXPECTED_SHARDS_PER_HOST})" precheck_ok=true if (( remote_total != expected_remote_total )); then echo "!! 远端总分片不等:实际 ${remote_total} / 期望 ${expected_remote_total}" >&2 precheck_ok=false fi if (( agg_cnt < EXPECTED_SHARDS_PER_HOST )); then echo "!! ${AGGREGATOR_HOST} 本机分片不足:实际 ${agg_cnt} / 期望 ${EXPECTED_SHARDS_PER_HOST}" >&2 precheck_ok=false fi if [[ "${STRICT_PRECHECK}" == "true" && "${precheck_ok}" == "false" ]]; then echo "!! STRICT_PRECHECK 开启:预检不通过,停止执行" >&2 exit 2 fi [[ "${precheck_ok}" == "true" ]] && echo "OK: 预检通过(远端=${remote_total}、本机=${agg_cnt},总计期望=${EXPECTED_TOTAL_SHARDS})" || echo "WARN: 预检未通过(分片数量与期望不符),已启用宽松模式,继续执行..." echo "== 1/7 准备 staging 目录(干净环境)==" rm -rf "${STAGING_TAG_DIR}" mkdir -p "${STAGING_TAG_DIR}" echo "== 2/7 收集分片到 staging ==" for h in "${HOSTS[@]}"; do if ssh ${SSH_OPTS} "$h" "test -d '${CKPT_ROOT}/${TAG}'"; then echo " - 收集 ${h}:${CKPT_ROOT}/${TAG}/ -> ${STAGING_TAG_DIR}/" rsync ${RSYNC_OPTS} -e "ssh ${SSH_OPTS}" \ "${h}:${CKPT_ROOT}/${TAG}/" "${STAGING_TAG_DIR}/" || true else echo " - ${h} 无 ${CKPT_ROOT}/${TAG},跳过" fi done echo "== 3/7 在 staging 校验总分片数(应为 ${EXPECTED_TOTAL_SHARDS})==" mapfile -t SHARDS < <(find "${STAGING_TAG_DIR}" -maxdepth 1 -type f -name "*model_states.pt" | sort -u) CNT=${#SHARDS[@]} echo " - staging 中发现分片数:${CNT}" if (( CNT != EXPECTED_TOTAL_SHARDS )); then echo "!! 分片总数不等:staging 实际 ${CNT} / 期望 ${EXPECTED_TOTAL_SHARDS}。请检查是否缺片或命名不一致。" >&2 exit 3 fi echo "== 4/7 合并分片 -> 临时 FP32(PyTorch .bin),避免共享权重导致 safetensors 报错 ==" rm -rf "${TMP_PT_DIR}" mkdir -p "${TMP_PT_DIR}" # 直接走 API:safe_serialization=False -> 生成 pytorch_model.bin(FP32) python - < BF16,并解开 lm_head <-> embed_tokens 共享存储,保存为分片 safetensors(${MAX_SHARD_SIZE})==" python - <<'PY' import os, sys, torch from transformers import AutoConfig, AutoModelForCausalLM TMP_PT_DIR = os.environ["TMP_PT_DIR"] OUT_DIR = os.environ["OUT_DIR"] MAX_SHARD_SIZE = os.environ.get("MAX_SHARD_SIZE", "5GB") print("[load] from:", TMP_PT_DIR) cfg = AutoConfig.from_pretrained(TMP_PT_DIR, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( TMP_PT_DIR, config=cfg, trust_remote_code=True, torch_dtype=torch.bfloat16, # 目标 BF16 low_cpu_mem_usage=True, device_map={"": "cpu"}, # 全在 CPU 装载,避免吃显存 ) # —— 如 lm_head 与 embed_tokens 权重共享,则手动 untie,防止后续 safetensors 报共享存储 —— # try: emb = model.get_input_embeddings().weight if hasattr(model, "get_input_embeddings") else None head = model.lm_head.weight if hasattr(model, "lm_head") else None if emb is not None and head is not None and emb.data_ptr() == head.data_ptr(): with torch.no_grad(): model.lm_head.weight = torch.nn.Parameter(head.detach().clone()) print("[fix] Untied shared weights: lm_head.weight cloned from embed_tokens.weight") else: print("[fix] No shared storage detected between lm_head and embed_tokens") except Exception as e: print("[fix] Skip untie check:", e, file=sys.stderr) # 再确保全模型 dtype 为 BF16 model.to(dtype=torch.bfloat16) # 分片 safetensors(支持大模型) os.makedirs(OUT_DIR, exist_ok=True) model.save_pretrained( OUT_DIR, safe_serialization=True, # 写 safetensors max_shard_size=MAX_SHARD_SIZE, # 分片上限 ) print("[save] BF16 safetensors saved to:", OUT_DIR) PY echo "== 5.1/7 拷贝(/补齐)最终目录的 tokenizer 工件(如存在)==" for f in tokenizer_config.json tokenizer.json merges.txt vocab.json special_tokens_map.json added_tokens.json; do [[ -f "${CKPT_ROOT}/${f}" ]] && cp -n "${CKPT_ROOT}/${f}" "${OUT_DIR}/" || true done echo "== 6/7 自检(索引与 config)==" python - <<'PY' import os, json, sys out_dir = os.environ.get("OUT_DIR") idx = os.path.join(out_dir, "model.safetensors.index.json") if os.path.exists(idx): with open(idx) as f: j = json.load(f) print(f"OK: 找到 safetensors 索引:{idx}(参数条目 {len(j.get('weight_map', {}))})") else: # 单分片也可能没有 index.json sfts = [x for x in os.listdir(out_dir) if x.endswith(".safetensors")] if len(sfts) == 1: print(f"NOTE: 单分片 safetensors:{sfts[0]}") else: print("WARN: 未找到 model.safetensors.index.json,且分片数 != 1", file=sys.stderr) try: from transformers import AutoConfig cfg = AutoConfig.from_pretrained(out_dir, trust_remote_code=True) print("OK: 读取到 config:", cfg.model_type, "hidden:", getattr(cfg,'hidden_size',None), "layers:", getattr(cfg,'num_hidden_layers',None)) except Exception as e: print("WARN: 读取 config 失败(若无 config.json 可忽略):", e, file=sys.stderr) PY echo "== 7/7 清理提示 ==" echo "临时 FP32 目录:${TMP_PT_DIR}" echo "BF16 safetensors 输出:${OUT_DIR}" echo "完成。"